期刊文献+

流数据挖掘与电机无损检测

Stream Data Mining and Motor nondestructive testing
下载PDF
导出
摘要 流数据挖掘(Stream Data Mining)在监测和控制领域已经得到广泛应用,其产生的大量原始数据,采用常规的数值分析方法,由于其数据量大,处理能力的问题,不能很好地适应。通过流数据分析方法可以更有效地应对。本文通过电机监测的实际工程案例,将监测系统中的数据分析方法提升到完整的数值分析与流数据分析方法相结合的方式,提供更为完备的传感数据流的数据分析方法。 it introduces the reactive power and harmonic effect on 931 drilling rig, then discusses the reactive power compensation device in selection、design and application prospect for the compensation device in offshore oil drilling rig.
作者 马俊
出处 《电子测试》 2013年第5X期38-39,共2页 Electronic Test
关键词 流数据分析 电机监测 模式识别 快速傅里叶变换 小波变换 Drilling rig power factor Harmonic reactive power compensation stability benefits
  • 相关文献

参考文献2

二级参考文献54

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data streams. In: Popa L, ed. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems. Madison: ACM Press, 2002. 1~16.
  • 3Terry D, Goldberg D, Nichols D, Oki B. Continuous queries over append-only databases. SIGMOD Record, 1992,21(2):321-330.
  • 4Avnur R, Hellerstein J. Eddies: Continuously adaptive query processing. In: Chen W, Naughton JF, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 261~272.
  • 5Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A, Hildrum K, Madden S, Raman V, Shah MA. Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 2000,23(2):7-18.
  • 6Carney D, Cetinternel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik S. Monitoring streams?A new class of DBMS applications. Technical Report, CS-02-01, Providence: Department of Computer Science, Brown University, 2002.
  • 7Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In: Blum A, ed. The 41st Annual Symp. on Foundations of Computer Science, FOCS 2000. Redondo Beach: IEEE Computer Society, 2000. 359-366.
  • 8Domingos P, Hulten G. Mining high-speed data streams. In: Ramakrishnan R, Stolfo S, Pregibon D, eds. Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000. 71-80.
  • 9Domingos P, Hulten G, Spencer L. Mining time-changing data streams. In: Provost F, Srikant R, eds. Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM Press, 2001. 97~106.
  • 10Zhou A, Cai Z, Wei L, Qian W. M-Kernel merging: Towards density estimation over data streams. In: Cha SK, Yoshikawa M, eds. The 8th Int'l Conf. on Database Systems for Advanced Applications (DASFAA 2003). Kyoto: IEEE Computer Society, 2003. 285~292.

共引文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部