期刊文献+

海上交通管理影响因素数据包络分析研究

Systematic Research on Influence Mechanism in the Management of Maritime Transport
下载PDF
导出
摘要 海上交通管理是海上交通安全的重要手段,有效的交通管理能够显著避免重大交通事故的发生,故而需要深入研究海上交通管理影响因素;但是目前对该方面的定量研究还不多见。由此,本文提出了基于数据包络分析(DEA)的海上交通管理影响因素定量研究新方法。福建海上交通事故历史数据被用来进行经验分析。本文着重分析了海上基建、气象预警以及科学政策等因素对交通管理与安全的影响。分析结果表明气象预警严重影响船舶运行安全。故而,提出了针对性的改善提高措施来增强海上交通管理效率。 Maritimetransport management is a powerful tool for maritime safety and an effective maritime transport management manner could prevent ships from serious accidents;it is therefore crucial to provide correct and reliable management for maritime transport.However,little work has been done to investigate the influence mechanism in the management for maritime transport.In order to address this issue,this paper presents a novel method based on the data envelopment analysis(DEA)to systematically investigate the influence mechanism in the management for maritime transport.Empirical analysis has been carried out to quantitatively evaluate the influence contributions of the factors of the maritime infrastructure,the weather prediction,and the scientific policy.Analysis results indicate that the factor of the weather prediction will greatly influence the maritime safety.Hence,useful suggestions have been provided to improve the management for maritime transport.
作者 何伟
出处 《电子测试》 2014年第2X期128-129,共2页 Electronic Test
基金 福建省中青年教师教育科研项目(JA13251) 福州市科技局科技计划项目(2013-S-115) 闽江学院科技育苗项目(YKY13015)
关键词 水路运输 交通管理 交通安全 影响因素 maritime transport management maritime safety influence factors.
  • 相关文献

参考文献2

二级参考文献17

  • 1Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 2Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 3Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 5Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 6Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 7Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 8Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.
  • 9Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf.
  • 10Bernaille L, Teixeira R, Salamatian K. Early application identification. In: Proc. of the Conf. on Future Networking Technologies 2006 (CoNEXT 2006). Lisboa, 2006. http://portal.acm.org/citation.efm?id=1368445.

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部