期刊文献+

视频序列中基于粒子滤波的运动目标的跟踪的研究

Research on moving object tracking based on particle filter in video sequences
下载PDF
导出
摘要 信息时代背景下,安防、交通等领域对智能视频监控系统的需求日渐增加。粒子滤波作为一种新型滤波算法,以其自身独特的优势,在视频目标跟踪中得到了广泛应用和普及,但是,粒子滤波算法在实际应用过程中,存在很多不足之处,在很大程度上影响其跟踪效果。本文将对视频目标跟踪算法进行分析和研究,阐述视频序列中基于粒子滤波对运动目标的跟踪,并对粒子滤波算法进行适当改进,旨在为我国相关领域发展提供支持。 Under the background of information age,the demand for intelligent video surveillance system, security,transportation and other areas of increasing.Particle filter is a new filter algorithm,with its own unique advantages,in video target tracking has been widely applied and popularized,however,the particle filter algorithm in the actual application process,there are many shortcomings,the tracking effect to a great extent.In this paper,the analysis and Research on the tracking algorithm for video object tracking,particle filter paper for moving targets based on video sequence,and make some improvement to the particle filter algorithm,which aims to provide support for the development of related industries in china.
机构地区 公安海警学院
出处 《电子测试》 2015年第3X期55-57,共3页 Electronic Test
关键词 视频序列 粒子滤波 运动目标 跟踪 video sequence moving target tracking particle filter
  • 相关文献

参考文献6

二级参考文献45

  • 1侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 2查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 3赵跃,王世平,杨延西,刘丁.基于背景重建的多运动目标检测与跟踪[J].西安理工大学学报,2007,23(1):6-9. 被引量:4
  • 4容观澳.计算机图像处理[M].清华大学出版社,2000.269-288.
  • 5Kenneth R Castleman.数字图像处理[M].北京:电子工业出版社,1998..
  • 6夏正良.数字图像处理[M].南京:东南大学出版社,1999..
  • 7[1]Toyama K, Krumm J, Brumitt B, et al. Wallfollower: principles and practice of background maintenance. Inter. Conf. on Computer Vision, 1999, Corfu, Greece, 224-261
  • 8[2]Huwer S, Niemann H. Adaptive change detection for real-time surveilliance application. 3rd IEEE Inter. Workshop on Visual Surveillance, Dublin, Ireland, July 2000, 37-45
  • 9[3]Wern C R, Azarbayejani A, Darrell T, et al. Pfinder:real-time tracking of human body. IEEE Transaction on Pattern Analysis and Machine Intelligence,1997, 19:780-785
  • 10[4]Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-Filtering. In: Proc. International Conf. on recent advances in mechatronics, ICRAM'95, Istanbul, Turkey, Aug. 1995:193-199

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部