期刊文献+

改进的二维阈值图像分割 被引量:1

Improved Two-dimensional Image Threshold Segmentation
下载PDF
导出
摘要 本文提出了一种基于灰度图像像素点灰度和点邻域方差的改进二维图像分割法。新方法改进了阈值判定域,考虑了边界和噪声的影响,新定义了一个阈值分割函数,提高了分割精度。利用思维进化算法优化分割参数,提高了最优阈值的寻找速度。实验结果表明,基于思维进化算法的改进二维图像分割法优于传统算法,该算法具有较好的稳定性和收敛速度,更能满足图像处理高效率、短时耗的要求。 This paper proposes a improved two-dimensional image segmentation algorithm based on pixel gray level and pixel neighborhood variance of the gray-scale image.This new algorithm improves the judgment domain of threshold,considers the influence of the boundary and noise,defines a new threshold segmentation function,increases the accuracy of segmentation.Using mind evolutionary algorithm to optimize the segmentation parameters,and the search speed of optimal threshold is increased.The experiment result proves that the proposed algorithm is better than traditional algorithm,it has better stability and convergence speed,and also can meet the requirements of high efficiency,short-term consumption in the image processing.
作者 盛彬
出处 《电子测试》 2016年第3X期44-45,87,共3页 Electronic Test
基金 山西省自然科学基金(2015011065) 大同市基础研究项目(20151102)
关键词 二维阈值分割 思维进化算法 点邻域方差 OTSU法 two-dimensional threshold segmentation mind evolutionary algorithm(MEA) pixel neighborhood variance Otsu
  • 相关文献

参考文献2

二级参考文献34

  • 1谢克明,邱玉霞.基于数列模型的思维进化算法收敛性分析[J].系统工程与电子技术,2007,29(2):308-311. 被引量:8
  • 2刘洋.基于思维进化计算和蚂蚁算法的网格资源分配[J].计算机工程,2007,33(7):172-174. 被引量:1
  • 3Sun Chengyi, Sun Yan. Mind-evolution-based machine learning: Framework and the implementation of optimization[C]. Proc of IEEE Int Conf on Intelligent Engineering Systems. Piscataway: IEEE Press, 1998: 355-359.
  • 4Yan Gaowei, Xie Gang, Qiu Yuxia. MEA based nonlinearity correction algorithm for the VCO of LFMCW radar level gauge[C]. The 10th Int Conf on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Regina: University of Regina, 2005: 461-470.
  • 5Liu Jianxia, Li Nan, Xie Keming. Application of chaos mind evolutionary algorithm in antenna arrays synthesis[J]. J of Computers, 2010, 5(5): 717-724.
  • 6Wang Chuanlong, Xie Keming. Convergence of a new evolutionary computation algorithm in continuous state space[J]. Int J of Computer Mathematics, 2002, 79(1): 27-37.
  • 7Zhang Zhijun, Qiu Yuxia, Xie Keming. Convergence analysis on an improved mind evolutionary algorithm[C]. Proc of the 6th Int Conf on Natural Computation. Yantai: Yantai University, 2010: 2316-2320.
  • 8Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri,Turkey:Erciyes University,Engineering Faculty,Computer Engineering Department,2005.1-10.
  • 9Karaboga D,Basturk B.A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC)algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 10Karaboga D,Basturk B.On the performance of artificial bee colony(ABC)algorithm[J].Applied Soft Computing,2008,8(1):687-697.

共引文献12

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部