摘要
本文用向前差分法导出了通用的一维瞬态非线性扩散方程的差分方程;以此为基础编制的计算机程序得到了国际著名温度场非线性有限元程序ADINAT的检验。所编制的程序可适用于平面、柱面和球面等形状工件的渗碳过程控制或模拟,以及工件淬火冷却过程中的温度场分析等问题。其中的第Ⅱ类边界条件提供目前尚未解决的辉光离子渗碳和真空渗碳工艺中的工件碳分布控制的理论基础。
The general finite differential equation for one-dimension nonliner/transient
carburizing diffusion equation is introduced by finite differential method (FDM) in this paper. The results of the equation-based numericel calculation problem on APPLE-Ⅱ of IBM PC/PLUS have a good agreement with that of the finite element program for automatic dynamic incremental nonlinear analysis of temperature (ADINAT) on IBM4381 in ZRIME. The equation and program can be suitable to control and simulate the carburizing processes, to analyse the quenching temperature field (non-radiation) for plate, cylindric and spherical shape works. The use of the second boundary condition for the equation gives out the theoretical foundation of the carbon distribution control that is not be solved in plasma/vaccum carburizing so far.
关键词
渗碳
扩散
有限差分法
数学模型
Carburizing
Diffusion
Finite Differential Method(FDM)