期刊文献+

非局部凸拓扑线性空间中的Hahn Banach延拓性 被引量:3

Hahn-Banach Extension Property on Non Locally Convex Topological Linear Spaces
下载PDF
导出
摘要 1 序 众所周知,Hahn(1926)和Banach(1929)曾经在赋范空间中给出过一个十分重要的有关连续线性泛函的延拓定理: H.-B.定理 设X为赋范空间,X0为X的一个线性子空间,那么。 In this paper, we introduce some conditions which makes the non locally convex topological linear space to have the Hahn-Banach extension property. In particular, we introduce some characters of subspace in (1β) ,0<β<1, which has Hahn-Banach property.
作者 定光桂
机构地区 南开大学
出处 《数学进展》 CSCD 北大核心 1992年第4期427-431,共5页 Advances in Mathematics(China)
  • 相关文献

参考文献1

  • 1Jerzy Kakol. Basic sequences and non locally convex topological vector spaces[J] 1987,Rendiconti del Circolo Matematico di Palermo(1):95~102

同被引文献11

  • 1Day M M. The Space Lp with O<p<1[J]. Bull A M S, 1940, 46:816-823.
  • 2Gregory D A, Shapiro J H. Non-locally Convex Space with Hahn-Banach Extension Property [J]. Proc A M S, 1970, 25.. 902-905.
  • 3Popa N. On the Complemented Subspace of lp 0<p<1[J]. Rev Roum Math, Pure of Appl, 1981, 2 (26) : 287-299.
  • 4Rorbert W. A Non-locally convex F-space with the Hahn-Banach approximation property [M]. New York: Springer-verlags, 1975. 76-81.
  • 5Gregory D A, Shapiro J. Non-locally convex space with Hahn-Banach extension property [J]. Proceeding American Math Society, 1970, 25: 902-905.
  • 6Shapiro J. Extension of linear functionals on F-spaces with bases [J]. Duke Math J, 1970, 37: 639-645.
  • 7Kalton N J. Basic sequence in F-space and their applications [J]. Proceeding Edinburgh Math Soc, 1974, 2 (19) : 151-167.
  • 8Kalton N J, Peck N T, Rorbert W. An F-space sampler [M]. London: Cambridge Univeisity Press, 1984.
  • 9Talagrand M. A simple example of a pathological submeasure [J]. Math Ann, 1980, 252: 87-102.
  • 10[日]儿玉之宏,[日]永见启应 著,方嘉琳.拓扑空间论[M]科学出版社,1984.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部