期刊文献+

序列模式挖掘在物流中的应用

The Application of Sequence Mining in Logistics
原文传递
导出
摘要 当前第三方物流管理系统中以物流活动为对象的数据库庞大,难以发现有价值数据。为此,本文提出一种针对物流数据分析的经典方法:IGSP(improved sequential patterns)算法。该方法通过对原始序列数据库筛选,选出路径序列长度大于或等于候选序列长度的路径序列,进而有针对性地产生过度候选序列,经约减产生候选序列。利用这种产生候选序列的方式,能够有效地减少候选序列数量,进而产生物流中有意义的规则。案例和理论分析表明,该方法不仅缩小了扫描数据库的规模,而且减少了生成频繁序列的候选序列集合。 Currently the database for logistic actions in third party logistic system is very huge,so it is very difficult to find valuable data.Therefore,an efficient algorithm-IGSP(improved sequential patterns)for analyzing logistic data is presented.In this method the original database is screened to find the path sequences that is greater than or equal to the candidate sequences in the length,and then generate the candidate sequences through generating the transitional candidate sequences.This method could effectively generate frequent patterns by reducing the volume of sequences,and then find the valuable rules.Theoretical analysis shows that the method not only reduce the size of scanning database but also reduce the candidate sequences set.
机构地区 潍坊职业学院
出处 《潍坊高等职业教育》 2009年第1期65-68,共4页 Weifang Higher Vocational Education
关键词 物流管理系统 数据挖掘 关联规则 序列模式挖掘 logistic management system data mining association rules sequential patterns mining
  • 相关文献

参考文献8

  • 1张长海,胡孔法,陈凌.序列模式挖掘算法综述[J].扬州大学学报(自然科学版),2007,10(1):41-46. 被引量:5
  • 2陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 3倪旻,徐晓飞,邓胜春.基于关联规则的零部件供应商选择优化[J].计算机集成制造系统-CIMS,2004,10(3):317-321. 被引量:4
  • 4CHEUNG D W,HANJ,NG VT,et al.Afast distribu-ted algorithm for mining association rules[].Procof theth International Conference on Parallel and Distributed Infor-mation Systems.1996
  • 5PEI.J,HAN J,PINTO.H et al."PrefixSpan:Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth"[].IEEE Transactions on Knowledge&Data Engineering.2004
  • 6Zhang Changhai,Hu Kongfa,Liu Haidong,et al.FMG-SP:An Efficient Method of Mining Global Sequential Patterns[].Proc of theth International Conference on fuzzy systems and knowledge discovery.2007
  • 7Park J S;Chen M S;Yu P S.Efficient Parallel Data Mining for Association Rules,1995.
  • 8Srikant,R.,Agrawal,R.Mining sequential patterns: Generalizations and performance improvements[].Proc th Int Conf Extending Database Technology (EDBT’).1996

二级参考文献24

  • 1Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 2邹翔,张巍,刘洋,蔡庆生.分布式序列模式发现算法的研究[J].软件学报,2005,16(7):1262-1269. 被引量:19
  • 3陆介平,刘月波,倪巍伟,刘同明,孙志挥.基于PrefixSpan的快速交互序列模式挖掘算法[J].东南大学学报(自然科学版),2005,35(5):692-696. 被引量:6
  • 4宋世杰,胡华平,周嘉伟,金士尧.一种基于大项集重用的序列模式挖掘算法[J].计算机研究与发展,2006,43(1):68-74. 被引量:10
  • 5[2]HUALLACHAIN B O,WASSERMAN D.Vertical integration in a lean supply chain:brazilian automobile component parts[J]. Economic Geography,1999, 75(1): 21-42.
  • 6[4]THEDE A,SCHMIDT A,MERZ C. Integration of goods delivery supervision into e-commerce supply chain[Z]. WELCOM,2001.206-218.
  • 7[5]ZAIKIN O,DOLGUI A,KORYTKOWSKI P. Optimization of resource allocation in distributed production networks[Z]. CEEMAS, 2001.322-331.
  • 8[6]HAMMER J,SCHMALZ M,BRIEN W O, SHEKAR S,HALDEVNEKAR N. Seeking knowledge in legacy information systems to support interoperability[A]. ECAI-02 Workshop on Ontologies and Semantic Interoperability[C]. Lyon, France,2002.21-26.
  • 9[7]AGRAWAL R,SRIKANT R. Fast algorithms for mining association rules in large databases[R]. San Jose CA:In Research Report RJ9839, IBM Almaden Research Center,1994.
  • 10[8]AGRAWAL R. IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[A].ACM Proc. ACM SIGMOD Conference on Management of Data[C].Washington D C,1993.207-216.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部