摘要
<正> §l引言自然变换讨论了一类特殊的函子,一般函子之间的关系如何描述呢?例如:(?)函子F:CD(?)!函子F~*:C/R_l→D/R_2,使得有交换图(如右),其中R_1,R_2为C,D范畴中的合同关系,满足条件:(?)f,g∈Arr C(fR_(lg)(?)FfR_2Fg).而Q_(R_l),Q_(R_2)为泛函子.显然,函子F与F~*之间的关系不是自然变换所能处理的.
In this paper, categories Fun, Nat and Adi are disensed, and it prouee that they are categorieswith products.Difinition 1: A category is caled a factor category Fun, if(1) Objects, all factor;(2) Arrows, if there is a commutative diagram.then, we define an arrow (M,N) : F→G.Difinition 2: If there are two commutative diagamswhich mean we define a commutative diagramas follows:Difinition 3: A category is called anatural transformation category Nat,if(1) Objects, all natural transformations;(2) Arrows, if there is a commutative diagram (*) then, we define an arrowDinifition 4: A category iscalled an adjunction categoryAdi, if(1) Objects, all adjunctions;(2) Arrows, if (H, L) : F→F2satisfies: (a)?L,H?: G1→G2; (b) there are commutative dia-grams, for all objectsand We define an