期刊文献+

最优Tikhonov正则化矩阵及其在卫星导航定位模糊度解算中的应用 被引量:3

Optimal Tikhonov Regularization Matrix and Its Application in GNSS Ambiguity Resolution
原文传递
导出
摘要 首先,用贝叶斯(Bayes)统计理论的观点,把未知参数看作随机变量,引入未知参数的无信息先验分布函数,从数学上推导了均方误差最小意义下的正则化矩阵;然后,结合最优正则化矩阵和快速截断奇异值算法,提出了一种新的正则化方法;最后,探讨了新方法在全球卫星导航系统(Global Navigation Satellite System, GNSS)模糊度解算中的应用。通过一组GNSS模糊度解算实验,比较了最小二乘(least squares,LS)方法、L曲线岭估计和新方法的性能。结果表明,新方法解算成功率略高于L曲线岭估计,远高于LS方法;计算耗时略大于LS方法,远小于L曲线岭估计。 This contribution can be mainly divided into 3 aspects:(1) Based on Bayesian theory, unknown parameters are treated as random varies and their non-informative prior distribution function is introduced. Mathematical analysis is carried out to drive the optimal Tikhonov regularization matrix in the sense of minimizing the mean square error(MSE) of the solutions.(2) Combining the efficient truncated singular value decomposition(eTSVD), a new regularization method is proposed.(3) Glo-bal Navigation Satellite System(GNSS) ambiguity resolution application of the new method is discussed. Least squares(LS) estimation, ridge estimation of L curve and the new algorithm are compared by a group of GNSS ambiguity resolution experiments. The results show that the MSE of the new algorithm is slightly smaller than ridge estimation of L curve and much smaller than LS, however, the computational cost of the new algorithm is slightly more than LS but much less than ridge estimation of L curve.
作者 边少锋 吴泽民 BIAN Shaofeng;WU Zemin(Department of Navigation Engineering,Naval University of Engineering,Wuhan 430033,China;Unit 91919,Huanggang 438000,China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2019年第3期334-339,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41504029 41631072)~~
关键词 病态问题 TIKHONOV正则化 Bayes统计理论 GNSS 模糊度解算 ill-posed problem Tikhonov regularization Bayesian statistical theory GNSS ambiguity resolution
  • 相关文献

参考文献5

二级参考文献33

  • 1鲁国斌.广义岭回归估计中关于K值选取的Q(c)准则[J].数理统计与应用概论,1989,64(2).
  • 2黄玉琪.[D].郑州:郑州测绘学院,1997.
  • 3郑肇葆.摄影测量中病态方程求解问题[J].测绘学报,1987,(3).
  • 4vehla D,Rothacher M.Kinematic and reduced-dynamic precise orbit determination of low earth orbiters.Advances in Geosciences,2002,1:1-10.
  • 5Visser P N A M,van den IJsel J.GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE.Journal of Geodesy,2000,74:590-602.
  • 6de Boor C.A practical guide to splines-Rev.ed.Applied Mathematical Sciences,Vol.27.New York:Springer,2001.
  • 7Dierckx P.Curve and Surface Fitting with Splines,Monographs on Numerical Analysis.New York:Oxford Science Publications,1993.
  • 8Voltring H J.A Fortran package for generalized,cross-validatory spline smoothing and differentiation.Adv.Eng.Software,1986,8(2):104-107.
  • 9Kusche J,Klees R.Regularization of gravity field estimation from gravity gradimetry data.Journal of Geodesy,2002,76:359-368.
  • 10Ditmar P,Eck van der Sluijs van der A A.A technique for Earth's gravity field modeling on the basis of satellite accelerations.Journal of Geodesy,2004,78:12-33.

共引文献70

同被引文献18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部