摘要
针对传统基于遥感影像的地表覆盖分类方法普遍存在的生产周期长、成本高、自动化程度低等问题,提出了一种完全利用兴趣点(point of interest,POI)数据进行地表覆盖自动化分类的方法。首先应用潜在狄利克雷分布主题计算模型,从POI数据的文本信息中挖掘出与地表覆盖类型相关的主题类型和分布概率;然后基于POI文本的主题分布,运用支持向量机分类算法构建地表覆盖分类模型;最后以遥感影像地表覆盖分类结果为依据,采用随机抽样的方式对所提方法进行验证。结果表明,该方法能够较好地区分人造地表和非人造地表,且整体分类精度超过80%,可作为传统遥感影像分类的辅助手段,满足地表覆盖快速分类的制图需求。
Traditional land cover classification process is very complicated,time-consuming and labor-intensive,which requires huge amount of imagery data and involves many people.Recently,crowd-sourcing data have been used for land cover classification with lower costs,but they are still time-consuming due to the process of interpreting data.We examine the potential of textual information in point of interest(POI)as a new reference source.Firstly,POI textual data is analyzed to calculate the word distributions and topic distributions of POI using latent Dirichlet allocation(LDA)topic model.Secondly,support vector machine(SVM)algorithm is applied with topic distributions of POI to build a land cover classification model.Finally,we evaluate the land cover classification result by taking a random sample of remote sensing images.In the experiments,1.9 million POIs from Weibo,Baidu and Gaode are used to test the proposed method,and result shows that a classification accuracy of over 80%is achieved.
作者
邢汉发
孟媛
侯东阳
徐海滨
刘金然
XING Hanfa;MENG Yuan;HOU Dongyang;XU Haibin;LIU Jinran(College of Geography and Environment,Shandong Normal University,Jinan 250300,China;School of Geography,South China Normal University,Guangzhou 510631,China)
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2019年第5期758-764,共7页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金(41501420
41701443)
广州市科技计划(156100021
201803030034)~~