期刊文献+

基于时空立方体的人群异常行为检测与定位 被引量:6

Abnormal Crowd Behavior Detection and Location Based on Spatial-temporal Cube
原文传递
导出
摘要 针对视频监控系统中人群异常行为检测准确率低的问题,提出了一种基于时空立方体的人群异常行为检测与定位方法。首先利用光流法计算等间距采样的特征点光流场,然后根据光流场计算特征点的运动速度、方向和方向熵3个特征量,并分别将其统计直方图投影到对应的三维立体空间中,构建描述人群行为的时空立方体特征。同时,将图像分成多个子区域,并计算各子区域的时空立方体特征;设计基于最近邻分类和支持向量机的级联分类器,完成人群异常行为的检测与定位。结果表明,该方法比现有方法能更准确地检测视频中的异常人群。 To handle the issue of low accuracy performance of crowd abnormal behavior detection in video surveillance systems,an abnormal crowd behavior detection and location approach based on spatial-temporal cube is proposed in this paper.The optical flow method is first used to calculate the optical flow field of feature points which are obtained by the equidistant sampling method.Then,the velocity,orientation and orientation entropy of the feature points are obtained.And statistical histograms of the three parameters are mapped into the corresponding cubic space to extract the spatial-temporal cube feature for describing the spatial-temporal features.A blocking method is used to divide the image into several sub regions,and the spatial-temporal cubes of each sub region are calculated.Finally,a cascade classifier based on nearest neighbor classification and support vector machine is designed to detect and locate crowd abnormal behaviors.Experimental results show that the proposed method can effectively detect and locate abnormal crowd behaviors in videos.
作者 胡学敏 余进 邓重阳 宋昇 陈钦 HU Xuemin;YU Jin;DENG Chongyang;SONG Sheng;CHEN Qin(School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2019年第10期1530-1537,共8页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金青年基金(61806076) 湖北省自然科学基金青年项目(2018CFB158) 湖北省大学生创新创业训练计划基金(201710512049)~~
关键词 视频监控 人群异常行为检测 光流法 时空立方体 级联分类器 支持向量机 video surveillance abnormal crowd behavior detection optical flow spatial-temporal cube cascade classifier support vector machine
  • 相关文献

参考文献4

二级参考文献36

  • 1SONG Weiguo YU Yanfei FAN Weicheng Zhang Heping.A cellular automata evacuation model considering friction and repulsion[J].Science China(Technological Sciences),2005,48(4):403-413. 被引量:19
  • 2朱述龙.纹理图像统计模型与纹理图像分割[J].测绘学报,1995,24(2):60-66. 被引量:3
  • 3黄桂兰,郑肇葆.分形几何在影像纹理分类中的应用[J].测绘学报,1995,24(4):283-291. 被引量:24
  • 4徐芳.航空影像纹理特征的分析[J].武汉大学学报:信息科学版,2002,27:126-128.
  • 5Huet F, Philipp S. A Multi-scale Fuzzy Classication by Knn. Application to the Interpretation of Aerial Images. The Fourteenth International Conference, 1998.
  • 6Greenberg S, Guterman H. A Neural-Network-based Classifier Applied to Real-World Aerial Images. 1994 IEEE International Conference, 1994.
  • 7Cortes C, Vapnik V. Support-Vector Networks. Machine Learning, 1995, 20(3) :273-297.
  • 8Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 9Stein D W J, Beaven S G, Hoff L E, et al. Anoma- ly Detection from Hyperspectral Imagery[J]. IEEE Signal Processing Magazine, 2002, 19(1) : 58-69.
  • 10Reed I S, Yu X. Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown Spectral Distrihution [ J ]. IEEE Trans Acou, Speech Signal Process, 1990, 38(10):1 760-1 770.

共引文献39

同被引文献68

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部