期刊文献+

云计算中基于NSGA-Ⅲ的动态虚拟机调度方法

Dynamic Virtual Machine Placement Based on NSGA-Ⅲin Cloud Computing
原文传递
导出
摘要 如何将大量的虚拟机有效分布到多个物理节点上是云计算面临的主要难题之一。基于应用负载的动态变化预测信息,将虚拟机在物理节点上的分布问题转化为一个多目标优化问题,利用遗传算法来寻求该多目标问题的近似最优解,在遗传算法的交叉与变异阶段结合类型匹配的规则,在选择阶段利用基于参考点的快速非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅢ,NSGA-Ⅲ)选择出较优子代种群。仿真结果表明,基于NSGA-Ⅲ的遗传算法(Multi-Objective Genetic Algorithm based on NSGA-Ⅲ,MOGAⅢ)在解决虚拟机调度问题时,在云平台的稳定时间、物理节点的激活数量和虚拟机的迁移次数等优化目标之间做了较好的平衡。和基于NSGA-Ⅱ的遗传算法(Multi-Objective Genetic Algorithm based on NSGA-Ⅱ,MOGAⅡ)相比,算法MOGAⅢ的平均功耗降低了4.46%。 How to effectively map virtual machines(VMs)to physical nodes is one of the most important challenges tackled in cloud computing.Based on prediction information of applications’workloads,VM distribution on nodes was defined as a multi-objective optimization problem and genetic algorithm was employed to find the approximate optimal solution.Type matching was used in operator crossover and mutation.Non-dominated sorting genetic algorithmⅢ(NSGA-Ⅲ)was used for operator selection.Simulation results demonstrate that,multi-objective genetic algorithm based on NSGA-Ⅲ(MOGAⅢ)can well balance the relationship among stabilization time of the cloud,active physical nodes,and the number of VM migration.Compared with multi-objective genetic algorithm based on NSGA-Ⅱ(MOGAII),MOGAⅢdecreases power consumption 4.46%on average.
作者 邓莉 李洋 顾进广 田萍芳 何亨 DENG Li;LI Yang;GU Jin-guang;TIAN Ping-fang;HE Heng(College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China;Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System,Wuhan 430065,China)
出处 《武汉理工大学学报》 CAS 北大核心 2017年第5期78-88,共11页 Journal of Wuhan University of Technology
关键词 云计算 虚拟机调度 多目标优化 遗传算法 cloud computing virtual machine scheduling multi-objective optimization genetic algorithm
  • 相关文献

参考文献5

二级参考文献57

  • 1Van Veldhuizen DA. Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations [Ph.D. Thesis]. Graduate School of Engineering of the Air Force Institute of Technology, Air University, 1999.
  • 2Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Trans. on Evolutionary Computation, 2001,6(2): 182-197.
  • 3Van Veldhuizen DA, Lamont GB. On measuring multiobjective evolutionary algorithm performance. In: Zalzala A, Eberhart R, eds. Proc. of the Congress on Evolutionary Computation (CEC 2000), Vol. 1. Piscataway: IEEE Press, 2000. 204-211.
  • 4Mostaghim S, Teich J. A new approach on many objective diversity measurement. In: Branke J, Deb K, Miettinen K, Steuer R, eds. Proc. of the Practical Approaches to Multi-Objective Optimization. 2005. 1862-4405. http://drops.dagstuhl.de/opus/volltexte/ 2005/254
  • 5Khare V, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. In: Proc. of the 2nd Int'l Conf. on Evolutionary Multi-Criterion Optimization. 2003. 376-390.
  • 6Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-A comparative case study. In: Eiben AE, Back T, Schoenauer M, Schwefel HP, eds. Proc. of the 5th Int'l Conf. on Parallel Problem Solving from Nature (PPSN-V). Berlin: Springer-Verlag, 1998.292-301.
  • 7Hansen MP, Jaszkiewicz A. Evaluating the quality of approximations of the non-dominated set. Technical Report, 1998-7, Institute of Mathematical Modeling, Technical University of Denmark, 1998.
  • 8Da Fonseca VG, Fonseca CM, Hall AO. Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D, eds. Proc. of the 1st Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2001). LNCS 1993, Berlin: Springer-Verlag, 2001. 213-225.
  • 9Xia DX, Wu ZR, et al. Functions of Real Variable & Functional Analysis (Volume 2). Beijing: Higher Education Press, 1979.
  • 10Zeng SY, Yao SZ, Kang LS, Liu Y. An efficient multi-objective evolutionary algorithm: OMOEA-II. In: Coello Coello CA, et al., eds. Proc. of the 3rd Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2005). LNCS 3410, Mexico: Springer-Verlag, 2005. 108-119.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部