期刊文献+

甲基橙修饰石墨烯的制备及电容性能 被引量:1

Preparation and capacitive properties of methyl orange modified graphene
下载PDF
导出
摘要 为了改善石墨烯的分散性和提高石墨烯的比电容,采用非共价键表面修饰方法 ,在氧化石墨烯还原过程中加入甲基橙,利用甲基橙与石墨烯的π-π相互作用,将甲基橙接枝在石墨烯的表面,成功地制备了甲基橙接枝石墨烯.采用傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FESEM)及电化学工作站,对改性石墨烯的组成、结构及电化学性能进行了测试.FTIR测试证实了甲基橙成功地接枝到石墨烯的表面,FESEM显示改性石墨烯片层剥离比较好;水溶性测试显示与未改性的石墨烯相比,甲基橙改性的石墨烯在水中具有良好的分散性.电化学循环伏安法显示改性石墨烯作为电极材料具有良好的电容倍率特性,而且恒电流充放电测试也显示了当电流密度为0.15 A/g时,改性石墨烯的比电容达到101 F/g. To improve the dispersion of graphene and enhance specific capacitance of graphene, methyl orange(MO) was successfully grafted on the surface of graphene via strong π-π interaction between graphene and MO in reaction system during the reduction process of graphene oxide with non-covalent surface modification method. The composition, structure and electrochemical properties of the modified graphene were tested with infrared spectroscopy(FTIR), field emission scanning electron microscopy(FESEM) and electrochemical workstation. FTIR confirms that methyl orange successfully graft onto the surface of grapheme, and FESEM shows the modified graphene exists in single layer or few layers. Water-solubility test shows the methyl orange modified graphene has better dispersion compared to the unmodified graphene in water. Cyclic voltammetry shows the modified graphene as electrode material has a good rate capability. And constant current charge-discharge test shows that the specific capacitance of modified graphene can reach 101 F / g when the current density is 0.15 A / g.
出处 《武汉工程大学学报》 CAS 2015年第5期51-54,共4页 Journal of Wuhan Institute of Technology
基金 国家自然科学基金(51373126) 武汉工程大学科学研究基金(K201464)
关键词 电极材料 表面改性 电化学 超级电容器 electrode surface modification electrochemistry supercapacitor
  • 相关文献

参考文献8

  • 1李亮,胡军,班兴明,陈郁勃.石墨烯的制备及表征[J].武汉工程大学学报,2014,36(8):46-50. 被引量:7
  • 2李亮,朱寒冰,喻丹,陈旭.甲基橙掺杂聚吡咯/氧化石墨烯复合材料[J].武汉工程大学学报,2013,35(5):43-46. 被引量:2
  • 3万其进,廖华玲,刘义,魏薇,舒好,杨年俊.石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J].武汉工程大学学报,2013,35(2):16-23. 被引量:15
  • 4Omar García-Valdez,Raquel Ledezma-Rodríguez,Enrique Saldívar-Guerra,Luis Yate,Sergio Moya,Ronald F. Ziolo.Graphene oxide modification with graft polymers via nitroxide mediated radical polymerization[J]. Polymer . 2014 (10)
  • 5Fei-Peng Du,Jing-Jing Wang,Chak-Yin Tang,Chi-Pong Tsui,Xiao-Lin Xie,Ka-Fu Yung.Enhanced electrochemical capacitance of polyaniline/graphene hybrid nanosheets with graphene as templates[J]. Composites Part B . 2013
  • 6Fei-Peng Du,Jing-Jing Wang,Chak-Yin Tang,Chi-Pong Tsui,Xing-Ping Zhou,Xiao-Lin Xie,Yong-Gui Liao.Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance[J]. Nanotechnology . 2012 (47)
  • 7E Bekyarova,S Sarkar,S Niyogi,M E Itkis,R C Haddon.Advances in the chemical modification of epitaxial graphene[J]. Journal of Physics D: Applied Physics . 2012 (15)
  • 8Jeffrey R. Potts,Daniel R. Dreyer,Christopher W. Bielawski,Rodney S. Ruoff.Graphene-based polymer nanocomposites[J]. Polymer . 2010 (1)

二级参考文献33

  • 1Novoselov K S, Geim A K. The rise of graphene[J]. Nat Mater, 2007, 61 183-191.
  • 2Lee C G, Wei X D, Jeffrey W K, et al. Measure- ment of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887) : 385-388.
  • 3Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907.
  • 4LuC H, Yang H H, Zhu C L, et al. A Graphene platform for sensing biomoleeules[J]. Angew Chem Int Ed, 2009, 48(26):4785-4787.
  • 5Zhou M, Zhai Y M, Dong S J. Electrochemical bios- ensing based on reduced graphene oxide[J]. Anal Chem, 2009, 81:5603-5613.
  • 6Shah C S, Yang H F, Han D X, et al. Water-Soluble graphene covalently functionalized by biocompatibe poly- lysine[J]. Anal Chem, 2009, 81: 2378-2382.
  • 7Fu C L, Yang W S, Chen X, et al. Direct electroch- emistry of glucose oxidase on a graphite nanosheet- Nation composite film modified electrode[J]. Electrochem Commun, 2009,11(5) : 997-1000.
  • 8Wang Y, Li Y M, Tang L H, et al. Application od graphene modified electrode for selective detection of dopamine [J]. Electrochem Commun, 2009, 11: 889-892.
  • 9Alwarappan S, Erdem A, Liu C, et al. Probing the electrochemical properties of graphene nanosheets for biosensing application[J]. J Phys Chem C, 2009, 113 :8853-8857.
  • 10Shang N G, Papakonstantinou P, McMullan M, et al. Marchetto-Free effieient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes [J]. Adv Funct Mater, 2008,18:3506-3514.

共引文献21

同被引文献25

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部