期刊文献+

基于条件随机场的中文地址行政区划提取方法 被引量:7

Extraction of administrative division of Chinese address based on conditional random fields
下载PDF
导出
摘要 为了在非规范中文地址中有效的提取行政区划信息,提出了一种基于条件随机场的方法.该方法根据中文地址中行政区划的表达特点和特征,采用判别式概率模型,在观测序列已知的基础上对目标序列建模,通过构建语料训练集和建立相应的特征模板,得到行政区划的表达模型,然后使用该模型对测试集进行测试,并与标注好的测试数据进行比对,验证模型的性能.实验表明,与最大熵模型相比,条件随机场模型总的性能指标在其之上,地址信息解析的准确率能达到89.93%. To extract the information of administrative division effective1y from the non-standard Chinese ad-dress, a method based on conditiona1 random fie1ds was proposed. According to the characteristics of admin-istrative division, the mode1 of the target sequence was constructed on the basis of the observation sequence by using the discriminative probabi1ity mode1. Then, the expression mode1 of the administrative division was obtained by constructing the corpus training set and the corresponding feature temp1ate. Fina11y, the perfor-mance of the mode1 was verified by testing the test set and comparing its resu1ts with the marked test data. Experimenta1 resu1ts show that the performance of the mode1 is better than that of the maximum entropy mode1, and the accuracy rate of ana1ysis of address information reaches 89.93%.
出处 《武汉工程大学学报》 CAS 2015年第11期47-51,共5页 Journal of Wuhan Institute of Technology
基金 国家863项目(2013AA12A202) 武汉工程大学研究生教育创新基金项目(CX2014090)
关键词 位置信息解析 条件随机场 训练语料 location information parsing,condition random fields,training corpus
  • 相关文献

参考文献9

  • 1周鑫.半监督算法在自然语言处理中应用的研究[D].哈尔滨工业大学2014
  • 2朱俊.中文标准地址库构建关键技术研究[D].南京师范大学2013
  • 3SUN XiaoLiang1,2, JIA LiMin1, DONG HongHui1, QIN Yong1 & GUO Min3 1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China,2School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China,3Beijing Traffic Management Bureau, Beijing 100044, China.Urban expressway traffic state forecasting based on multimode maximum entropy model[J].Science China(Technological Sciences),2010,53(10):2808-2816. 被引量:6
  • 4Rabiner L R.A tutorial on hidden markov models and selected application in speech recognition. Proceedings of Tricomm . 1989
  • 5Pearl J.Probabilistic reasoning in intelligent systems: networks of plausible inference. . 1988
  • 6Lafferty J,McCallum A,Pereira F.Conditional random fields: probabilistic models for segmenting and labeling sequence data. Proceedings of the Eighteenth International Conference on Machine Learning . 2001
  • 7Thompson JD,Higgins DG,Gibson TJ.CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research . 1994
  • 8MCCALLUM A,FREITAG D,PEREIRA F.Maximum Entropy Markov Models for Information Extraction and Segmentation. Proc Jc ML . 2000
  • 9JIAYI Zhao,XIPENG Qiu,SHU Zhang.Part-of-Speech Tagging for Chinese-English Mixed Texts with Dynamic Features. Journal of Computational Information Systems (JCIS) . 2012

二级参考文献15

  • 1Jia L M,Qin Y,Dong H H,et al.Beijing Regional Traffic State and Level of Service Evaluation Indices and System Report. Beijing Jiaotong University and Beijing Traffic Management Bureau Report . 2008
  • 2Kamarianakis Y,Prastacos P.Space-time modeling of traffic flow. Comp Geotec . 2005
  • 3Dong H H,Jia L M,Sun X L,et al.Road traffic state prediction with a maximum entropy method. 5th International Joint Conference on INC,IMS and IDC . 2009
  • 4Han Chao,Su Song.A review of some main models for traffic flow forecasting. Intelligent Transportation Systems 2003 Proceedings .
  • 5Wang Yibing,Papageorgiou M,Messmer A.Real-time freeway traffic state estimation based on ex-tended Kalman filter:a case study. TransprtationScience . 2007
  • 6Wanli Min,Laura Wynter,Yasuo Amemiya.Road Traffic Prediction with Spatio-Temporal Correlations. IBM Research Report . 2007
  • 7Brian L Smith,Michael J Demetsky.Short Term Traffic Flow Prediction: Neural Network Approach. . 1994
  • 8Och F J,Ney H.Discriminative training and maximum entropy models for statistical machine translation. Proceedings of the40th Annual Meeting of the Association for Computational Linguistics(ACL) . 2002
  • 9Darroch J N,Ratcliff D.Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics . 1972
  • 10Lin W H,Lu Q,Dahlgren J.A dynamic procedurefor short-term prediction of traffic congestion. Proceedings of the 81st Transportation ResearchRecord Annual Meeting . 2002

共引文献12

同被引文献76

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部