期刊文献+

通过平滑势能面利用分子动力学计算CDK-8抑制剂的停留时间

Computing Residence Times of Cyclin-Dependent Kinase 8 Inhibitor via Potential-Scaled Molecular Dynamics Simulations
原文传递
导出
摘要 停留时间是药物研发过程中的重要参数,对筛选药物先导化合物具有重要的指导意义。但目前停留时间主要通过分子生物学实验测定,尚未有准确预测停留时间的计算化学方法。提出通过平滑势能面利用分子动力学方法来计算停留时间。在CHARMM力场下用分子动力学模拟计算了5个CDK-8抑制剂的停留时间。结果显示,停留时间的计算值大小顺序与实验测定的停留时间大小顺序一致。此方法有潜力应用于预测一般分子的停留时间,从而有助于先导化合物的筛选与合成。 Residence time is an important parameter in the process of drug research and development, and has important guiding significance for screening drug leading compounds. However, the present residence time is mainly determined by molecular biology experiments, and there is no computational chemistry method to predict residence time accurately. Here we present a methodology using potential-scalec molecular dynamics simulations to compute and predict residence time. The residence times of five Cyclin-Dependent Kinase 8(CDK-8) inhibitors are computed via potential-scaled molecular dynamics simulations. The ranking of computational residence times is in agreement with the experimental values,and this method has the potential to be used to predict the residence time of general molecules, thus lead to the screening and synthesis of lead compounds.
作者 张力驰瑞 ZHANG, Lichirui(College of Chemistry,Nankai University,Tianjin 300071. China)
出处 《武汉生物工程学院学报》 2017年第4期11-15,共5页 Journal of Wuhan Bioengineering Institute
关键词 计算化学 停留时间 分子动力学 CDK-8 computational chemistry residence time molecular dynamics CDK-8
  • 相关文献

参考文献3

二级参考文献41

  • 1欧阳芳平,徐慧,何红波,李义兵.蛋白质分子量子化学计算方法的研究进展[J].生物信息学,2004,2(2):42-46. 被引量:4
  • 2W. Graham Richards Department of Chemistry, University of Oxford, Central Chemistry, South Parks Road, Oxford OX1 3QH, UK.Applications of Pattern Recognition in Drug Discovery[J].Chemical Research in Chinese Universities,2002,18(2):107-108. 被引量:1
  • 3[1]Joseph C.J.Chem[J].Fduc,1993,70(11):904.
  • 4[2]Hehre W J,Radom L,Shleyer P V R. Pople J,ab initio Molecular Orbital Theory, New York:Wiley, 1986.
  • 5[3]Stewart J J P. In: Reviews in Computational Chemistry, Vol. 1. Lipkowitz K B and Boyd D B(Eds)[C] .New York: VCH, 1990,45- 81.
  • 6[4]Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P.J.Am[J].Chem. Soc., 1985,107: 3902 - 3909.
  • 7[5]杨玉良(YANG Yu-liang).高分子中的Monte Carlo方法(Monte Carlo Methodin Polymer)[M].上海:复旦大学出版社(Shanghai:Fu Dan University Press). 1994.
  • 8[6]赵南明(ZHAO Nan-ming),周海梦(ZHOU Hai-meng).生物物理学(Biophysics)[M].北京:高等教育出版社(Beijing:Higher Education Press).2000.
  • 9[7]Simmerling, C., Strockbine, Strockbine & Roitberg, A. E. All - atom structure prediction and folding simulations of a stable protein[ J]. Journal of the American Chemical Society,2002,124:11258 - 11259.
  • 10[8]Neidigh, J. W., Fesinmeyer, R. M. & Andersen, N. H. Designing a 20- residue protein[J] .Nature Structural Biology,2002,9,425-430.

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部