摘要
继续研究了g_上鞅的收敛定理,右连续修正以及其他性质,得出g_上鞅的右连续修正样本是强g_上鞅。文章的讨论与结果在连续的情形已证实可应用于g_上鞅的非线性Doob_Meyer分解的讨论,及不完全金融市场的期权定价及经济理论的效用函数的讨论中。因此,在带跳情形,也将可有类似应用。
This paper goes on improving the Convergence Theorem,the right-continuous modification and other properties of g-martingale. It also shows that the right-continuous modification of any g-supermartingale is a strong g-supermartingale. What the paper introduced in the case of continuity has been proved that it can be applied to the discussions for g-supermartingale of the nonlinear Doob-Meyer decomposition,to the contingent claims pricing in the incomplete markets and to the utility functions in economic theory.So that it will have the same applications in the case with jumps.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第6期1-3,共3页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金重大资助项目(79790130)