期刊文献+

关于g-上鞅的上穿不等式和强g-上鞅(Ⅱ)

On Upcrossing Inequality for g-Supermartingale and Strong g-Supermartingale(Ⅱ)
下载PDF
导出
摘要 继续研究了g_上鞅的收敛定理,右连续修正以及其他性质,得出g_上鞅的右连续修正样本是强g_上鞅。文章的讨论与结果在连续的情形已证实可应用于g_上鞅的非线性Doob_Meyer分解的讨论,及不完全金融市场的期权定价及经济理论的效用函数的讨论中。因此,在带跳情形,也将可有类似应用。 This paper goes on improving the Convergence Theorem,the right-continuous modification and other properties of g-martingale. It also shows that the right-continuous modification of any g-supermartingale is a strong g-supermartingale. What the paper introduced in the case of continuity has been proved that it can be applied to the discussions for g-supermartingale of the nonlinear Doob-Meyer decomposition,to the contingent claims pricing in the incomplete markets and to the utility functions in economic theory.So that it will have the same applications in the case with jumps.
作者 司徒荣 杨艳
机构地区 中山大学统计系
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第6期1-3,共3页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金重大资助项目(79790130)
关键词 带跳倒向随机微分方程 BSDE G-上鞅 强g-上鞅 GIRSANOV定理 ITO公式 GRONWALL不等式 上穿不等式 Backward stochastic differential equation(BSDE) with jumps strong g-supermartingale Girsanov theorem Ito's formula Gronwall's inequality
  • 相关文献

参考文献1

二级参考文献4

  • 1SITU R.Backward Stochastic Differential Equations with Jumps and Applications[ M].广东:广东科技出版社,2000..
  • 2CHEN Z J, PENG S G.A general downcrossing inequality for g-martingales[J]. Statistics Prob Letters,2000,46:169- 175.
  • 3CHEN Z J, WANG B. Infinite time interval BSDEs and the convergence of g-martingales[J] .J Austral Math Soe(Ser A) ,2000,69:187- 211.
  • 4PENG S G. Monotone limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer' s type[J]. Probab Theory Relat Fields, 1991,113 : 473 - 499.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部