摘要
在许多实际问题中,我们都希望计算以下超定线性方程组 Ax=b (1)的最小二乘解.其中A为一大型疏m×n实矩阵,m>n,b为一给定的m维实向量.这里假定Rank(A)=n. 我们知道,(1)可叙述成,求唯一向量X∈R^n,使||b—AX||_2=min||b—Ay||_2对一切y∈R^n。由于Rank(A)=n。
The convergence of SOR methods and SSOR methods for solving a least-squares problemwith a large sparse coefficient matrix has already been proved [1-4]. In this paper, the con-vergence of AOR methods for solving the equation generated by least-squares problems is con-sidered. It is shown that, by properly selecting the parameters, the AOR methods are always con-vergent.
出处
《数值计算与计算机应用》
CSCD
北大核心
1992年第3期214-220,共7页
Journal on Numerical Methods and Computer Applications