期刊文献+

An Integrated Study for the Utilization of Anthraquinone Compounds Extract“Heshouwu”In vivo and their Comparative Metabolism in Liver Microsomes Using UPLC-ESI-Q-TOF/MS^(n) 被引量:1

原文传递
导出
摘要 Objective: Anthraquinone(AQ), a major bioactive component of the traditional Chinese medicine He ShouW u, has widespread applications in industry and medicine. The objective of the current study is to explore the differences in the bioavailability of anthraquinones in vivo and the metabolism in liver microsomes. Materials and Methods: In vivo, we used a reliable UPLC?ESI?Qq Q?MS/MS method to measure seven AQ compounds in the jugular vein plasma of rats following oral administration of He Shou Wu. Furthermore, in order to quantify the bioavailability of AQs in vivo and to further understand the metabolism of these compounds, we compared the in vitro metabolism of AQ in different species with respect to metabolic profiles, the enzymes involved, and catalytic efficiency using liver microsomes from human(HLM), mouse(MLM), rat(RLM), and beagle dog(DLM). Results: We identified two metabolic pathways, including the hydroxylation and glucuronidation of AQ, in the liver microsomes of humans and other species using UPLC?ESI?Q?TOF. We found that substitutions on the AQ ring were crucial to the activity and regioselectivity of its hydroxylation. In general, hydroxylation activity decreased greatly with β?COOH(rhein) and enhanced dramatically with β?OH(emodin). We also found that glucuronidation of the compound emodin?8?O?β?D?glucoside acts as the main isoform in AQ hydroxylation in HLM and DLM. Total microsomal intrinsic clearance values for AQ were greatest in mouse microsomes, followed by those in dog, human, and rat microsomes. Conclusion: The absorption of different anthrquinone compounds varied based on the compound structure, the metabolism types and products of anthraquinones in liver microsomes were different in different species. These findings provide vital information for a deeper unuunderstanding of the metabolism of AQs. Objective: Anthraquinone(AQ), a major bioactive component of the traditional Chinese medicine He ShouW u, has widespread applications in industry and medicine. The objective of the current study is to explore the differences in the bioavailability of anthraquinones in vivo and the metabolism in liver microsomes. Materials and Methods: In vivo, we used a reliable UPLC?ESI?Qq Q?MS/MS method to measure seven AQ compounds in the jugular vein plasma of rats following oral administration of He Shou Wu. Furthermore, in order to quantify the bioavailability of AQs in vivo and to further understand the metabolism of these compounds, we compared the in vitro metabolism of AQ in different species with respect to metabolic profiles, the enzymes involved, and catalytic efficiency using liver microsomes from human(HLM), mouse(MLM), rat(RLM), and beagle dog(DLM). Results: We identified two metabolic pathways, including the hydroxylation and glucuronidation of AQ, in the liver microsomes of humans and other species using UPLC?ESI?Q?TOF. We found that substitutions on the AQ ring were crucial to the activity and regioselectivity of its hydroxylation. In general, hydroxylation activity decreased greatly with β?COOH(rhein) and enhanced dramatically with β?OH(emodin). We also found that glucuronidation of the compound emodin?8?O?β?D?glucoside acts as the main isoform in AQ hydroxylation in HLM and DLM. Total microsomal intrinsic clearance values for AQ were greatest in mouse microsomes, followed by those in dog, human, and rat microsomes. Conclusion: The absorption of different anthrquinone compounds varied based on the compound structure, the metabolism types and products of anthraquinones in liver microsomes were different in different species. These findings provide vital information for a deeper unuunderstanding of the metabolism of AQs.
出处 《World Journal of Traditional Chinese Medicine》 2018年第1期21-27,共7页 世界中医药杂志(英文)
基金 financial support from the Major Scientific and Technological Special Project for"Significant New Drugs Creation"(No.2014ZX09304307)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部