期刊文献+

Vascular endothelial dysfunction and pharmacological treatment 被引量:26

Vascular endothelial dysfunction and pharmacological treatment
下载PDF
导出
摘要 The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.
作者 Jin Bo Su
出处 《World Journal of Cardiology》 CAS 2015年第11期719-741,共23页 世界心脏病学杂志(英文版)(电子版)
关键词 ENDOTHELIAL DYSFUNCTION Endotheliumdependent vasod Endothelial dysfunction Endotheliumdependent vasod
  • 相关文献

参考文献20

  • 1Turgay Celı,k,Sevket Balta,Murat Karaman,Seyı,t Ahmet Ay,Saı,t Demı,rkol,Cengı,z Ozturk,Mustafa Dı,nc,Hı,lmı,U. Unal,M. Ilker Yı,lmaz,Selı,m Kı,lı,c,Gulcan Kurt,A. Tas,Atı,la Iyı,soy,Fosca Quartı,-Trevano,Francesco Fı,cı,Guı,do Grass&inodot.;Endocan, a novel marker of endothelial dysfunction in patients with essential hypertension: Comparative effects of amlodipine and valsartan[J]. Blood Pressure . 2015 (1)
  • 2Minmin Zhu,Meilin Wen,Xia Sun,Wankun Chen,Jiawei Chen,Changhong Miao.Propofol Protects Against High Glucose–Induced Endothelial Apoptosis and Dysfunction in Human Umbilical Vein Endothelial Cells[J]. Anesthesia & Analgesia . 2015 (4)
  • 3Mario Rienzo,Jonathan Melka,Alain Bizé,Lucien Sambin,Mathieu Jozwiak,Jin Bo Su,Luc Hittinger,Alain Berdeaux,Bijan Ghaleh.Ivabradine Improves Left Ventricular Function During Chronic Hypertension in Conscious Pigs[J]. Hypertension . 2015 (1)
  • 4A Sánchez,P Martínez,M Mu?oz,S Benedito,A García‐Sacristán,M Hernández,D Prieto.Endothelin‐1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin‐resistant obese rats: role of ET<sub>A</sub> and ET<sub>B</sub> receptors[J]. Br J Pharmacol . 2014 (24)
  • 5Patrícia Passaglia,Natália A. Gonzaga,Daniela P.C. Tirapelli,Luis F. Tirapelli,Carlos R. Tirapelli.Pharmacological characterisation of the mechanisms underlying the relaxant effect of adrenomedullin in the rat carotid artery[J]. J Pharm Pharmacol . 2014 (12)
  • 6Brent A. Wilkerson,Kelley M. Argraves.The role of sphingosine-1-phosphate in endothelial barrier function[J]. BBA - Molecular and Cell Biology of Lipids . 2014 (10)
  • 7Luis Sargento,Milan Satendra,Susana Longo,Nuno Lousada,Roberto Palma Reis.Heart Rate Reduction with Ivabradine in Patients with Acute Decompensated Systolic Heart Failure[J]. American Journal of Cardiovascular Drugs . 2014 (3)
  • 8Larissa Pernomian,Mayara Santos Gomes,Carolina Baraldi Araujo Restini,Ana Maria de Oliveira,Vladimir V. Matchkov.Mas -Mediated Antioxidant Effects Restore the Functionality of Angiotensin Converting Enzyme 2-Angiotensin-(1–7)- Mas Axis in Diabetic Rat Carotid[J]. BioMed Research International . 2014
  • 9Caroline Berenguer-Daizé,Fran?oise Boudouresque,Cyrille Bastide,Asma Tounsi,Zohra Benyahia,Julie Acunzo,Nadège Dussault,Christine Delfino,Nathalie Baeza,Laurent Daniel,Mylène Cayol,Dominique Rossi,Assou El Battari,Denis Bertin,Kamel Mabrouk,Pierre-Marie Martin,L’Houcine Ouafik.Adrenomedullin Blockade Suppresses Growth of Human Hormone–Independent Prostate Tumor Xenograft in Mice[J]. Clinical Cancer Research . 2013 (22)
  • 10Arturo Orea-Tejeda,Karla Balderas-Mu?oz,Lilia Castillo-Martínez,Oscar Infante-Vázquez,Raúl Martínez Memije,Candace Keirns-Davis,Joel Dorantes-García,René Narváez-David,Zuilma Vázquez-Ortíz,Gregory Giamouzis.Effect of Ivabradine on Endothelial Function in Diastolic and Right Heart Failure Patients[J]. Cardiology Research and Practice . 2013

二级参考文献50

  • 1Schroder K, Tschopp J. The inflammasomes. Cell 2010; 140:821-832.
  • 2Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-I adaptors ASC and Ipaf. Nature 2004; 430:213-218.
  • 3Allen IC, Scull MA, Moore CB, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 2009; 30:556- 565.
  • 4Gross 0, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 2009; 459:433-436.
  • 5Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the Na1p3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008; 453:1122-1126.
  • 6Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440:237-241.
  • 7Dostert C, Petrilli V, Van 8ruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008; 320:674- 677.
  • 8Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464:1357-1361.
  • 9Ichinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 2009; 206:79-87.
  • 10Kastner DL, Aksentijevich I, Goldbach-Mansky R. Autoinf1ammatory disease reloaded: a clinical perspective. Cell 2010; 140:784-790.

共引文献61

同被引文献83

引证文献26

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部