期刊文献+

Phonon Limited Electron Mobility in Germanium FinFETs:Fin Direction Dependence

Phonon Limited Electron Mobility in Germanium FinFETs:Fin Direction Dependence
下载PDF
导出
摘要 We investigate the phonon limited electron mobility in germanium(Ge) fin field-effect transistors(FinFETs)with fin rotating within(001),(110),and(111)-oriented wafers. The coupled Schrodinger-Poisson equations are solved self-consistently to calculate the electronic structures for the two-dimensional electron gas, and Fermi's golden rule is used to calculate the phonon scattering rate. It is concluded that the intra-valley acoustic phonon scattering is the dominant mechanism limiting the electron mobility in Ge FinFETs. The phonon limited electron motilities are influenced by wafer orientation, channel direction, in thickness Wfin, and inversion charge density Ninv. With the fixed Wfin, fin directions of(110),(112) and(110) within(001),(110), and(111)-oriented wafers provide the maximum values of electron mobility. The optimized for mobility is also dependent on wafer orientation and channel direction. As Ninv, increases, phonon limited mobility degrades, which is attributed to electron repopulation from a higher mobility valley to a lower mobility valley as Ninv increases. We investigate the phonon limited electron mobility in germanium(Ge) fin field-effect transistors(FinFETs)with fin rotating within(001),(110),and(111)-oriented wafers. The coupled Schrodinger-Poisson equations are solved self-consistently to calculate the electronic structures for the two-dimensional electron gas, and Fermi's golden rule is used to calculate the phonon scattering rate. It is concluded that the intra-valley acoustic phonon scattering is the dominant mechanism limiting the electron mobility in Ge FinFETs. The phonon limited electron motilities are influenced by wafer orientation, channel direction, in thickness Wfin, and inversion charge density Ninv. With the fixed Wfin, fin directions of(110),(112) and(110) within(001),(110), and(111)-oriented wafers provide the maximum values of electron mobility. The optimized for mobility is also dependent on wafer orientation and channel direction. As Ninv, increases, phonon limited mobility degrades, which is attributed to electron repopulation from a higher mobility valley to a lower mobility valley as Ninv increases.
作者 敬莹 韩根全 刘艳 张进成 郝跃 Ying Jing;Gen-Quan Han;Yan Liu;Jin-Cheng Zhang;Yue Hao
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第2期54-58,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 61534004,61604112 and 61622405
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部