摘要
Based on nonequilibrium Green's function method in combination with density functional theory, we study the electronic transport properties of dipyrimidinyl-diphenyl molecules embedded in a carbon atomic chain sandwiched between zigzag graphene nanoribbon and different edge geometries C_2N-h2D electrodes. Compared with the graphene electrodes, the C_2N-h2D electrode can cause rectifying and negative differential resistance effects.For C_2N-h2D with zigzag edges, a more remarkable negative differential resistance phenomenon appears, whereas armchair-edged C_2N-h2D can give rise to much better rectifying behavior. These results suggest that this system can be potentially useful for designs of logic and memory devices.
Based on nonequilibrium Green's function method in combination with density functional theory, we study the electronic transport properties of dipyrimidinyl-diphenyl molecules embedded in a carbon atomic chain sandwiched between zigzag graphene nanoribbon and different edge geometries C_2N-h2D electrodes. Compared with the graphene electrodes, the C_2N-h2D electrode can cause rectifying and negative differential resistance effects.For C_2N-h2D with zigzag edges, a more remarkable negative differential resistance phenomenon appears, whereas armchair-edged C_2N-h2D can give rise to much better rectifying behavior. These results suggest that this system can be potentially useful for designs of logic and memory devices.
基金
the National Natural Science Foundation of China under Grant No 11004156
the Science and Technology Star Project of Shaanxi Province under Grant No 2016KJX-45
the Graduate Innovation Foundation of Xi’an Polytechnic University under Grant No chx201880