摘要
本文采用非掺杂超薄发光层及双极性混合间隔层结构,获得了高效、光谱稳定的白光有机发光器件.基于单载流子器件及单色蓝光有机发光器件的研究,确定了双极性混合间隔层的最佳比例;通过瞬态光致发光寿命研究,验证了不同发光材料之间的能量传递过程;得到的三波段和四波段白光有机发光器件的最高效率分别为52 cd/A (53.5 lm/W)和13.8 cd/A (13.6 lm/W),最高外量子效率分别为17.1%和11.2%.由于发光层不同颜色之间依次的能量传递结构,三波段白光有机发光器件的亮度从465到15950 cd/m^2时,色度坐标的变化?CIE仅为(0.005, 0.001);四波段白光有机发光器件的亮度从5077到14390 cd/m^2时,色度坐标的变化?CIE为(0.023, 0.012).
In this paper, efficient phosphorescent white organic light-emitting diodes(WOLEDs) with stable spectra are fabricated based on doping-free ultrathin emissive layers and mixed bipolar interlayers. To achieve WOLEDs, at least three kinds of light-emitting layers, i.e. blue, green and red, are needed. The traditional method to fabricate emissive layers is by co-evaporation, which can improve electroluminescent efficiency. However, the co-evaporation rate and dopant concentration are difficult to control, which leads to a bad reproducibility and thus goes against commercialization. In order to simplify the structures of WOLEDs and improve repeatability, several doping-free ultrathin emissive layers are used in this paper with 3 nm mixed bipolar interlayers separating them. The optimal ratio of bipolar hybrid material is determined by hole-only device, electron-only device and blue phosphorescent OLED. In addition, green, orange and red monochromatic OLED have also been fabricated separately, which are used to prove that mixed bipolar material is also suitable for the three phosphorescent emitting material. The WOLED with TCTA interlayers is fabricated to confirm that mixed bipolar material is beneficial to the characteristics of WOLEDs. The energy transfer process between different emitting materials is verified by studying the transient photoluminescence lifetime. The maximum efficiency of three-color and four-color doping-free WOLED are 52 cd/A(53.5 lm/W) and 13.8 cd/A(13.6 lm/W), respectively, and the maximum external quantum efficiency of three-color and four-color doping-free WOLED are 17.1% and 11.2%, respectively. Due to the sequential energy transfer structure between different emitting layers, the Commission Internationale de L’Eclairage coordinates shows a very slight variation of(0.005, 0.001) from 465 cd/m^2 to 15950 cd/m^2 for three-color WOLED. The Commission Internationale de L’Eclairage coordinates shows a variation of(0.023, 0.012) from 5077 cd/m^2 to 14390 cd/m^2 for four-color WOLED. The four-color WOLED shows a maximum color rendering index of 92.7 at 884 cd/m^2, and it reaches 88.5 at 14390 cd/m^2. In addition, the lifetime of phosphorescent OLED is usually poor due to the trap formed by triplet-polaron annihilation. The exciton distribution can be broadened and the exciton concentration can be reduced by using ultrathin light emitting layers(< 1 nm) and mixed bipolar interlayers. Therefore, triplet-polaron annihilation will be reduced, and the lifetime of OLEDs will be improved.
作者
俞浩健
姚方男
代旭东
曹进
田哲圭
Yu Hao-Jian;Yao Fang-Nan;Dai Xu-Dong;Cao Jin;Chulgyu Jhun(Key Laboratory of Advanced Display and System Applications,Ministry of Education,Shanghai University,Shanghai200072,China;Science and Technology Research Academy,Shanghai University,Shanghai 200072,China;School of Green Energy & Semiconductor Eng.,Hoseo University,Asan City,Chungnam,336-795,South Korea)
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2019年第1期228-237,共10页
Acta Physica Sinica
基金
国家重点研发计划(批准号:No.2017YFB0404503)
上海大学"高端外国专家项目"资助的课题~~
关键词
白光有机发光器件
非掺杂
双极性混合间隔层
超薄发光层
white organic light-emitting diodes
doping-free
bipolar hybrid interlayer
ultrathin emitting layer