期刊文献+

激光熔覆TiC增强FeAl金属间化合物基复合材料涂层磨损性研究 被引量:19

Wear Resistance of Laser Clad TiC Reinforced FeAl Intermetallic Matrix Composite Coatings
下载PDF
导出
摘要 利用激光熔覆技术在1Cr18Ni9Ti奥氏体不锈钢表面制得了以TiC为增强相、以FeAl金属间化合物为基体的耐磨复合材料涂层,研究了激光熔覆TiC/FeAl复合材料涂层在干滑动磨损条件下的耐磨性能及磨损机制。结果表明:随着载荷和滑动速率的增加,TiC/FeAl金属间化合物基复合材料涂层的磨损速率增加,其磨损机制随着载荷的增加逐渐由磨料磨损向粘着磨损转变;激光熔覆层中TiC体积分数的增加,一方面提高了涂层的磨料磨损抗力,另一方面降低了熔覆层表面与对磨材料之间的粘着倾向,提高了TiC/FeAl涂层的滑动磨损性能。激光熔覆TiC/FeAl金属间化合物基复合材料涂层具有优异的耐磨性能并随TiC体积分数的增加而提高。 TiC reinforced FeAl intermetallic matrix composite coatings were fabricated on the substrate of 1Crl8Ni9Ti by laser cladding, the dry sliding wear resistance of the composite coating was evaluated under dry sliding wear conditions as functions of applied load and sliding speed. The wear mechanisms were discussed based on the worn surfaces and wear debris examinations. Results showed that the laser clad TiC/FeAl intermetallic matrix composite coatings have outerstanding wear resistance under the, dry sliding wear test conditions. The wear rate of TiC/FeAl composite coatings increases with increasing applied load and sliding speed. SEM observation of worn surfaces and wear debris indicated that there is a transition of wear mechanism from-abrasive wear to adhesive wear with increasing applied load. Furthermore, with the increase of volume fraction of TiC carbide in laser clad coating, the resistance to abrasive wear is improved, and the adhesion between test specimen and counter-face material is reduced, leading to an excellent abrasive and adhesive wear resistance.
作者 陈瑶 王华明
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2003年第10期840-843,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(59971003)
关键词 TiC/FeAl复合材料涂层 激光熔覆 磨损性能 磨损机制 TiC/FeAl composite coating laser clad dry sliding wear wear mechanism
  • 相关文献

参考文献7

  • 1[1]Stoloff N S. Iron Aluminides: Present Status and Future Prospects [J]. Mater Sci Eng, 1998, A258:1 ~ 14
  • 2[2]Schneibel J H, Carmichael C A. In: Cornwall R G, Messing G L, German R G eds. Sintering Technology[C] . New York:Marcel Dekker, 1996:253 ~ 260
  • 3[3]Schneibel J H, Carmichael C A, Specht E D, Subramanian R.Liquid-phase Sinter Iron Aluminide-ceramic composites [J] .Intermetallics, 1997,5:61
  • 4[4]Ko S H, Hanada S. In-situ Production and Microstructure of Iron Aluminide / TiC Composites [J] . Intermetallics, 1999,7:947
  • 5[5]Subramanian R, Schneibel J H. FeAl-TiC Cermets-melt Infiltration Processing and Mechanical Properties[J]. Mater Sci Eng,1997, A239:633
  • 6[6]Subramanian R, Schneibel J H. FeAl-TiC and FeAl-WC Composite-melt Infiltration Processing, Microstructure and Mechanical Properties [J]. Mater Sci Eng, 1998, A244:103
  • 7陈瑶,王华明.激光熔覆TiC/FeAl复合材料涂层显微组织及初生TiC生长机制研究[J].稀有金属材料与工程,2003,32(7):569-572. 被引量:18

二级参考文献16

  • 1傅恒志 刘林 方晓华.西北工业大学学报,1987,5:279-279.
  • 2Fernandez R, Lecomte J C, Kattamis T E. Metallurgical Transactions[J], 1978,A9:1 381.
  • 3Fox S, Brooks J W, Loretto M H, Smallman R E. International Conference on Strength of Metals and Alloys(7th) [C],Oxford, UK: Pergamon, 1985:339.
  • 4Jackson K A. Material Science and Engineering[J], 1984,65:7.
  • 5Mckamey C C, Devan J H, Tortorelli P F. J Material Research [J], 1991,6:1 779.
  • 6Kohler B, Wolff J, Franz M, Broska A, Hehenkamp Th. Intermetallic [J], 1999, 7:269.
  • 7Mckamey C C, Maziasz P J, Jones J W. J Material Research[J], 1992,7:2 089.
  • 8Pang P, Kumer K S. Philosophy Magazine Letters[J], 1997,76:323.
  • 9Subramanian P, Schneibel J H. JOM[J], 1997,49:50.
  • 10Ko S H, Hanada S. Intermetallics[J], 1999,7:947.

共引文献17

同被引文献172

引证文献19

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部