摘要
<正> Let M be a smooth, compact (closed and without boundary) surface. Consider the metricsσ(z)|dz|~2 and ρ(ω)|dω|~2 on M, where z=x+iy and ω=u+iv are conformal coordinates onM. For a Lipschitz map ω=ω(z): (M, σ|dz|~2)→(M, ρ|dw|~2), we define the energy density
出处
《数学进展》
CSCD
北大核心
2003年第6期757-759,共3页
Advances in Mathematics(China)
基金
Supported partly by the National Natural Science Foundation of China(No.19801024)
the Natural Science Foundation of Guangdong Province in China(No.984112)