摘要
本文证明了如果1<c<43/36,则二元素变数丢番图不等式|P_1~c+P_2~c-N|<N^(1-43/36c)对几乎所有的正数N是可解的,改进了Laporta的结果1<c<15/14。我们也研究了番图不等式|P^c+P_k^c-N|<ε对于充分大的正数N的可解性问题,这里p是素数,而P_k表示最多有k个素因子的正整数,ε为一充分小的正数。
In this paper we prove that if 1 < c < 43/36,then the Diopantine inequality |P1c + p2c - N| < N1-43/36c is solvable in prime numbers p1 and p2 for 'almost all' N > 0, which improves Laporta's range 1 < c < 15/14. For sufficiently large N, we also investigate the solvable of the Diophantine inequality |pc + Pkc - N|< ε in a prime p and a positive integer Pk with at most k prime factors.
出处
《数学进展》
CSCD
北大核心
2003年第6期706-721,共16页
Advances in Mathematics(China)
基金
This work is sunpported by the National Natural Science Foundation(No.19801021)
National Natural Science foundation of Shandong Province(Grand No.Q98A02110)
关键词
丢番图不等式
可解性
素数
正整数
Diophantine inequality
prime number
exponential sum