期刊文献+

摄动有限差分(PFD)方法的数值计算 被引量:6

Numerical simulation of perturbational finite difference (PFD) method
下载PDF
导出
摘要  本文利用数值摄动的思想发展了对流扩散(CD)方程的摄动有限差分(PFD)[2]格式,局部线化可获得摄动准确解(PENS)格式。把格式中的指数函数按网格雷诺数的幂级数展开,能够给出PENS格式的各阶近似,即各阶PFD格式。本文构造了一维CD方程的PENS及二阶PFD格式以及二维CD方程的二阶PFD格式,并利用二阶精度的PFD格式计算了一维CD方程、方腔流动和前、后台阶绕流流动等算例。计算给出了准确度较高的数值结果。 The perturbational finite difference (PFD) method is a kind of high accurate compact difference method, but its idea is different from the normal compact method. This method can get a perturbational exact numeical solution (PENS) scheme for locally linearized convectivediffusion (CD) equation. PENS scheme (or method) is similar to the finite analytical (FA) method and exact difference scheme (EDS), they are all exponential schemes, but PENS scheme is much simpler. By expanding the exponential term in PENS to the powerseries of grid Reynolds number, the approximate schemes of different order of PENS scheme, i.e. PFD schemes, can be obtained. They are all upwind schemes and remain the concise structure form of firstorder upwind scheme. The PENS and PFD schemes for 1D CD equation are constructed, and PFD scheme is extended to 2D CD equation. For 1D equation and 2D flowing problems, highly accurate results are obtained by using second order accurate PFD schemes.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2003年第6期732-737,共6页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金资助(10032050 10272106)
关键词 摄动有限差分法 对流扩散方程 摄动准确解格式 摄动高精度差分格式 流体力学计算 perturbation finite difference method convection-diffusion equation perturbational exact numerical solution scheme
  • 相关文献

参考文献3

二级参考文献6

共引文献20

同被引文献109

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部