期刊文献+

三维接触边界元法的一种误差直接估计 被引量:2

Direct error estimate for the boundary element method for a 3-D contact problem
原文传递
导出
摘要 将作者所在研究组提出的二维弹性力学问题边界元解误差的直接估计推广到三维问题,给出了确定与域内解连续的边界位移的一种精确有效的方法。在此基础上提出将接触体接触单元间与域内解连续的边界位移之差的某种度量作为三维弹性接触问题边界元法的一种误差直接估计,并且提出了三维弹性接触问题的一种自适应边界元法计算方案。这种方案为确定没有解析解可作比较的复杂接触问题的边界元解精度提供了可能。文中对于三维弹性接触问题,给出了一个计算误差直接估计及自适应边界元法的算例。 A direct error estimate for the boundary element method (BEM) for 2-D elasticity problems was extended to the 3-D elastic contact problem. An accurate algorithm was developed to determine the boundary displacement consistent with the displacement field within the domain of an elastic body. The difference between the displacement limits for both sides of the contacted bodies was used to develop a local direct error estimate of the BEM solution for the 3-D elastic contact problem. An adaptive boundary element method was then developed to compensate for the error. The scheme can estimate the error for complicated contact problems without the corresponding analytical solution. A numerical example is presented to illustrate the efficiency of the direct error estimation method.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第11期1499-1502,1506,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(10172053 19972030)
关键词 三维接触边界元法 误差直接估计 弹性接触 边界位移 有限元 elastic contact boundary element method (BEM) error estimate
  • 相关文献

参考文献10

  • 1Paulino G H, Menon G, Mukherjee S. Error estimation using hypersingular integrals in boundary element methods for linear elasticity [J]. Engineering Analysis with Boundary Elements, 2001, 25: 523-534.
  • 2Wendland W L, Yu D H. A posterior local error estimate of boundary element methods with some pseudo-differential equations on closed curves [J]. Journal of Computational Mathematics, 1992, 10: 273-289.
  • 3Paulino G H. Novel Formulations of the Boundary Element Method for Fracture Mechanics and Error Estimation [D]. Ithaca, NY: Cornell University, 1995.
  • 4Paulino G H, Gray L J, Zarikian V. Hypersingular residuals-A new approach for error estimation in the boundary element method [J]. International Journal for Numerical Methods in Engineering, 1996, 39: 2005-2029.
  • 5Menon G, Paulino G H, Mukherjee S. Analysis of hypersingular residual error estimates in boundary element methods for potential problems [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 173: 449-473.
  • 6Paulino G H, Gray L J. Galerkin residuals for adaptive symmetric-Galerkin boundary element methods [J]. ASCE Journal of Engineering Mechanics, 1999, 125: 575-585.
  • 7Chati M K, Paulino G H, Mukherjee S. The meshless standard and hypersingular boundary node methods - Applications to error estimation and adaptivity in three-dimensional problems [J]. International Journal for Numerical Methods in Engineering, 2001, 50: 2233-2269.
  • 8Mukherjee Y X, Mukherjee S. Error analysis and adaptivity in three-dimensional linear elasticity by the usual and hypersingular boundary contour methods [J]. International Journal of Solids and Structures, 2001, 38: 161-178.
  • 9Yao Z H, Zhong X G. On the objective measurement of the accuracy of boundary element method [A]. Du Q H, Tanaka M. Proc 2th China-Japan Symp on BEM [C]. Beijing: Tsinghua University Press, 1988. 24-36.
  • 10Yao Z H, Dong C Y. A direct error estimator and adaptive scheme of boundary element method [A]. Du Q H, Tanaka M. Proc 4th China-Japan Symp on BEM [C]. Beijing: Tsinghua University Press, 1991. 95-102.

同被引文献29

  • 1范久臣,杨兆军,刘长亮,王继新,丁树伟,施宗成.鼓式制动器刚柔耦合虚拟样机[J].吉林大学学报(工学版),2009,39(S1):183-187. 被引量:10
  • 2陈国庆,陈万吉.接触问题的非线性互补-接触柔度法[J].计算结构力学及其应用,1996,13(4):385-392. 被引量:8
  • 3单磊,董天临.应用边界元法对电磁场计算的分析及优化[J].信息通信,2007,20(1):31-33. 被引量:3
  • 4Griffiths H. Magnetic induction tomography[J]. Meas SciTechnol, 2001, 12: 1126-1131.
  • 5Watson S, Wee H C, Griffiths H, et al. A highly phase-stable differential detector amplifier for magnetic induction tomography [J]. Physiol Meas, 2011,32 : 917- 926.
  • 6Watson S, Williams R J, Gough W A, et al. A magnetic induction tomography system for samples with conductivities less than 10 S· m^-1[J]. Meas Sci Technol, 2008, 19: 1-11.
  • 7Yin W L, Peyton A J. A planar EMT system for the detection of faults on thin metallic plates [J]. Meas Sci Technol, 2006, 17: 2130-2135.
  • 8Soleimani M, Lionheart W R B, Riedel C H, et al. Forward problem in 3 D magnetic induction tomo- graphy(MIT)[C]//Proc 3rd World Congr Industrial Process Tomography. Banff, Canada, 2003: 275-280.
  • 9Yin W L, Peyton A J. Sensitivity formulation including velocity effects for electromagnetic induction systems[J]. IEEE Transactions on Magnetics, 2010, 46(5) : 1172-1176.
  • 10Yin W L, Peyton A J, Zysko G, et al. Simultaneous noncontact measurement of water-level and conductivity [J]. IEEE Transactions on Instrumentation and Measurement,2008, 57: 2665-2669.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部