期刊文献+

基于WiFi和IMU结合的室内定位方法的研究 被引量:2

Research of indoor position method based on WiFi and IMU combination
下载PDF
导出
摘要 针对单一的WiFi定位误差较大的问题,提出了利用IMU人体姿态传感器来辅助WiFi进行室内定位的方案。首先在实验场所建立合适的WiFi位置指纹库,然后利用改进的K-NN算法对终端进行实时定位。同时利用IMU所测得的角度变化和终端前一个位置的坐标来判断终端处于哪一个象限,再和该象限的WiFi指纹库进行匹配计算出终端的坐标,从而不仅缩小了算法的复杂度,也提高了室内定位的精确度。 Aiming at the problem that single WiFi positioning error is large,this paper proposed a method which uses IMU sensor to assist WiFi indoor positioning. Firstly,we need to establish proper WiFi location fingerprint in experimental places,then use the improved K-NN algorithm for real-time positioning terminal. At the same time,we use angle change measured by the IMU and the former coordinate's position of terminal to judge terminal in which quadrant,and then match it with the WiFi fingerprint of this quadrant to calculate the coordinates of the terminal. It not only reduces the complexity of the algorithm,but also improves the accuracy of indoor positioning.
出处 《微型机与应用》 2017年第8期11-14,共4页 Microcomputer & Its Applications
关键词 WiFi指纹库 IMU人体姿态传感器 K-NN算法 WiFi fingerprint IMU body posture sensor K-NN algorithm
  • 相关文献

参考文献2

二级参考文献28

  • 1HARLE R. A Survey of Indoor Inertial Positioning Sys- terns for Pedestrians [ J ]. IEEE Transactions on Commu- nications Surveys & Tutorials. 2013, 15 ( 3 ) : 1281- 1293.
  • 2IBARRA B, RAMIREZ C. Pedestrian Dead Reckoning towards Indoor Location Based Applications [ C ]. Interna- tional Conference on Electrical Engineering Computing Science and Automatic Control. 2011, 1 (6) : 26-28.
  • 3LI W L, ILTIS. A Smartphone Localization Algorithm using RSSI and Inertial Sensor Measurement Fusion [ C ]. IEEE Global Communications Conference. 2013, 9 (13) : 3335 -3340.
  • 4YUNG F H, et al. Performance of an MMSE Based In- door Localization with Wireless Sensor Networks[ C]. In- ternational Conference on Networked Computing and Ad- vaneed Information Management, 2010.
  • 5HARA S, ANZAI D. Use of a Simplified Maximum Like- lihood Function in a WLAN-Based Location Estimation [ C ]. IEEE Conference on Wireless Communications and Networking, 2009.
  • 6XIANGLING Z, CHANGXU W. Modeling Pedestrian Crossing Paths at Unmarked Roadways [ J ]. IEEE Trans- actions on. Intelligent Transportation Systems. 2013, 1438-1448.
  • 7ROBERTSON P, ANGERMANN M, KRACH B. Simul- taneous Localization and Mapping for Pedestrians using Only Footmounted Inertial Sensors [ C ]. 11 th Internation- al conference on Ubiquitous computing, 2009.
  • 8JIMENEZ A R, SECO F, PRIETO C, et al. A Compari- son of Pedestrian Dead-Reckoning Algorithms using a Low-cost MEMS IMU [ C ]. IEEE International conference on Intelligent Signal Processing Symposium. 2009:37-42.
  • 9HALL D L, LLINAS J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23.
  • 10KAWAGUCHI N, YANO M, ISHIDA S, et al. Underground positioning: subway information system using WiFi location technology[C]//IEEE Tenth International Conference on Mobile Data Management: Systems, Services and Middleware (MDM'09). [S.1.]: IEEE, 2009: 371-372.

共引文献23

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部