期刊文献+

深度学习在音乐推荐中的应用 被引量:3

下载PDF
导出
摘要 协同过滤(Collaborative filtering)是推荐系统中最广泛应用的一种方法,传统基于协同过滤的方法使用用户-物品评分矩阵预测用户对物品的喜好。在音乐推荐中,由于评分矩阵的过于稀疏而无法学习出用户和音乐的潜在特征。为了解决该问题,本文提出了一种基于内容的堆叠式降噪自动编码器,其结合了基于内容的推荐和协同过滤的优点。在Kaggle的比赛数据集上,可以发现模型表现要优于传统的协同过滤方法。
出处 《计算机产品与流通》 2017年第7期203-205,共3页
  • 相关文献

同被引文献41

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部