基于支持向量机的软件故障预测研究
摘要
支持向量机软件故障预测,对解决神经网络计算机故障问题具有重要意义,是神经网络计算机软件应用学习能力差及泛化能力不佳等问题得以有效解决,是现代软件应用开发的重要内容。本文将根据支持向量机的软件故障预测特点,对其预测原理及运算方法进行分析,并制定有效的软件故障预测解决方案,以此为支持向量机的软件故障预测应用提供理论性内容参考依据。
二级参考文献15
-
1胡求索,钟诚.基于神经网络的软件模块风险性预测模型[J].计算机工程与应用,2007,43(18):106-110. 被引量:10
-
2Amasaki S, Takagi Y, Mizuno O, et al. A Bayesian Belief Network for Assessing the Likelihood of Fault Content[C]// Proc of the 14th IEEE Int'l Syrup on Software Reliability Engineering, 2003:215- 226
-
3Thwin M M T, Quah T S. Application of Neural Networks for Software Quality Prediction Using Object-Oriented Metries[J]. Journal of Systems and Software, 2005,76(2): 147-156.
-
4Guo L, Ma Y, Cukic B, et al. Robust Prediction of Fault- Proneness by Random Forests[C]//Proc of the Int'l Symp on Software Reliability Engineering, 2004:417-428.
-
5Guo P,Lyu M R. Software Quality Prediction Using Mixture Models with EM Algorithm[C]//Proc of the 1st IEEE Asia- Pacific Conf on Quality Software, 2000 : 69-78
-
6Zhou Y, Leung H. Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity Faults[J]. IEEE Trans on Software Engineering, 2006, 32 (10): 771- 789.
-
7Xing F, Guo P, Lyu M R. A Novel Method for Early Soft-ware Quality Prediction Based on Support Vector Machine [C]//Proc of the 16th IEEE Int'l Syrup on Software Reliability Engineering, 2005 : 213-222.
-
8Elish K O, Elish M O. Predicting Defect-Prone Software Modules Using Support Vector Machine [J]. Journal of Systems and Software, 2007, 81 (5):649-660.
-
9Gondra I. Applying Machine Learning to Software Fault- Proneness Prediction[J]. Journal of Systems and Software, 2008,81(2) : 186-195.
-
10http://mdp. ivv. nasa. gov/.
-
1唐英杰,马天睿.电力系统负荷预测研究[J].水能经济,2017,0(12):13-13.
-
2龙萍.计算机软件数据接口的应用分析[J].科技资讯,2018,16(11):11-11.
-
3肖鑫.计算机软件的日常管理与维护[J].神州,2018,0(23):253-253.
-
4李毅.浅谈计算机软件应用[J].神州印象,2018(4):63-63.
-
5张智凤.电子工程视角下探析我国计算机软件应用的直播技术[J].明日,2018,0(34):100-100.
-
6王钰为.信息与计算机科学的发展趋势[J].电子技术与软件工程,2018(3):258-258.
-
7郑宁.“人工智能+媒体”时代的法律问题[J].青年记者,2018(13):24-26. 被引量:3
-
8徐奎诚.1990年和2000年劳力预测方法探讨[J].中国农业资源与区划,1988,12(3):27-29.
-
9朱艳茹.计算机软件及其应用[J].饮食科学,2017,0(9X):171-171.
-
10李莉,吴润泽,包正睿,庞思睿.可重构分层感知网络流量预测算法[J].计算机技术与发展,2018,28(5):197-200. 被引量:2