期刊文献+

适用于空间定位的粒子滤波算法研究及实现 被引量:1

Research and Hardware Implementation of Particle Filter for Spatial Localization
下载PDF
导出
摘要 针对传统的移动节点定位方法主要应用在二维平面内的局限性,提出一种适用于三维空间定位的粒子滤波算法.考虑到移动节点定位的实时性,将算法用硬件实现.针对粒子滤波算法运算量大、并行度低的问题,对其进行改进,降低算法的计算复杂度,采用流水线架构,使整体运算速度变高,而且资源消耗较少.通过SystemC进行架构设计,进一步提高硬件设计的效率.最后在FPGA上完成算法的硬件实现,实验结果表明改进算法与硬件实现方案有良好的定位精度,硬件消耗为6 826个逻辑单元,平均执行时间降低了约1/3. As the traditional node localization method was mainly used for two-dimensional plane node ,presented a hardware implementation of particle filter for spatial node localization . For the problem of large amount of computation and low degree of parallelism ,optimized particle filter algorithm .Proposed a hardware architecture that made the computing speed higher ,and decreased resource consumption .Pipelining architecture was carried out through SystemC language ,bringing to further improvement of the design efficiency .The experimental study on FPGA indicated that the proposed particle filters algorithm has good positioning accuracy .Hardware consuming was 6 826 logic cells ,and the average execution time was reduced by about 1/3 .
出处 《微电子学与计算机》 CSCD 北大核心 2014年第6期8-11,共4页 Microelectronics & Computer
基金 湖北自然科学基金项目(2010CDB02706)
关键词 粒子滤波 移动节点 三维位置 流水线 SYSTEMC particle filter mobile nodes dimensional position pipelining SystemC
  • 相关文献

参考文献4

二级参考文献29

  • 1Song T L and Speyer J L. A stochastic analysis of a modified gain extended Kalman filter with application to estimation with bearings-only measurements. IEEE Trans. on Automatic Control, 1985, AC-30(10): 940-949.
  • 2Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, London: Artech House, 2004, Chapter 5-12.
  • 3Doucet A, de Freitas N, and Gordon N (Eds.). Sequential Monte Carlo Methods in Practice. New York: Springer, 2001, Chapter 15-26.
  • 4Doucet A and Wang X D. Monte Carlo methods for signal processing: A review in the statistical signal processing context. IEEE Signal Processing Magazine, 2005, 22(6): 152-170.
  • 5Gordon N, Salmond D, and Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation, lEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
  • 6Zhai Y and Yeary M. A new particle filter tracking algorithm for DOA sensor system. Proc. of Instrumentation and Measurement Technology, Warsaw, 2007: 1-4.
  • 7Bolic M, Athalye A, and Djuric P M, et al. Algorithmic modification of particle filters for hardware implementation. Proc. of the European Signal Processing. Conference, Vienna,Austria, 2004: 1641-1646.
  • 8Bolic M, Djuric P M, and Hong S. Resampling algorithms for particle filters: A computational complexity perspective. EURASIP Journal of Applied Signal Processing: 2004, (15): 2267-2277.
  • 9Athalye A, Bolic M, and Hong S, et al Generic hardware architectures for sampling and resampling in particle filters. EURASIP Journal of Applied Signal Processing, 2005, (17): 2888-2902.
  • 10Andy Ward. Sensor-driven Computing. Ph Dthesis,University of Cambridge, 1998.

共引文献115

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部