期刊文献+

类似虹膜轮廓曲线分割的SAR雷达成像技术 被引量:1

SAR Radar Imaging Technology Similar to Iris Contour Curve Segmentation
下载PDF
导出
摘要 合成孔径雷达(SAR)成像是跟踪探测机动目标的基础,传统的SAR雷达成像基础采用数据融合和图像配准的雷达成像方案,在获得具有相似测度的边缘轮廓特征时成像效果较好,当运动目标边缘为断裂的非相似度特征时,无法准确对快速运动目标成像.引入虹膜边缘轮廓曲线分割技术,提出一种基于虹膜边缘函数计算和区域灰度轮廓曲线分割的SAR雷达成像技术.构建合成孔径雷达回波模型,得到虹膜轮廓曲线分割的边缘函数的演化方程,实现SAR雷达准确成像.对4类高速飞行目标进行SAR成像仿真,结果表明采用该算法能避免因距离色散和多普勒时变出现的成像散焦,边缘轮廓特征能全面提取,成像分辨高.在雷达目标识别等领域具有较好的应用性. Synthetic Aperture Radar(SAR)imaging is the basis for tracking maneuvering target,the traditional radar imaging schemes are established based data fusion and image registration,when the non similarity characteristics of moving targets have fracture edge,the SAR imaging performance is bad for the fast moving target.The iris edge contour segmentation technique is introduced,a kind of SAR radar imaging method is proposed based on iris edge function calculation and region segmentation of gray level profile curve.The model of synthetic aperture radar echo is constructed,evolution equation of edge function of iris contour segmentation is obtained,and accurate SAR radar imaging is obtained.SAR imaging simulation is taken with 4kinds of high-speed flight targets,the results show that the algorithm can avoid imaging defocusing resulted from the distance dispersion and Doppler time deviation,edge feature can be extracted comprehensively,imaging resolution is high.It has better application value in the field of radar target recognition.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第9期126-130,134,共6页 Microelectronics & Computer
基金 国家自然科学基金(41171357) 河南省重点科技攻关项目(132102310003) 河南省教育厅科学技术研究重点项目(13A520354) 郑州市科技攻关项目(131PPTGG419-2)
关键词 虹膜分割 雷达成像 特征 目标识别 iris segmentation radar imaging feature target recognition
  • 相关文献

参考文献6

二级参考文献55

  • 1朱晓辉,郭文佳,王向军.超大范围坐标测量系统的现场测试基准及其误差分析[J].传感技术学报,2005,18(2):265-268. 被引量:4
  • 2王向军,韩双来.弹落点坐标测量系统的快速校准方法及精度分析[J].光学精密工程,2005,13(6):686-690. 被引量:19
  • 3陶然,邓兵,王越.分数阶FOURIER变换在信号处理领域的研究进展[J].中国科学(E辑),2006,36(2):113-136. 被引量:80
  • 4合成孔径雷达成像算法与实现[M].洪文,胡东辉,等译.北京:电子工业出版社,2007.339-342.
  • 5冈萨雷斯.数字图像处理(第二版)[M].北京:电子工业出版社,2005.
  • 6Zheng X, S Wang, Y Zhang. The Obstacle Detection and Measurement Based on Machine Vision [J]. International Journal of Intelligent Systems and Applications (IJISA), 2010, 2 (2): 17.265-268.
  • 7Huang C-H, C-S Hsu, P-C Tsai, et al. Vision Based 3-D Position Control for a Robot Ann. Systems, Man, and Cy- bernetics (SMC), 2011 IEEE International Conference[C]. IEEE 1699 - 1703.
  • 8DAUGMAN J. How iris recognition works [ J]. IEEE Trans on Circuits and Systems for Video Technology, 2004,14( 1 ) :21-30.
  • 9BOLES W W, BOASHASH B. A human identification technique using images of the iris and wavelet transform[ J]. IEEE Trans on Signal Processing, 1998,46 (4) : 1185-1188.
  • 10WILDES R P. Iris recognition : an emerging biometric technology [ J ]. Proceedings of the IEEE,1997,85(9) :1348-1363.

共引文献15

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部