期刊文献+

一种面向低延迟的内存HDFS数据存储策略 被引量:2

A Data Storage Strategy for Low-latency in Memory HDFS
下载PDF
导出
摘要 从底层存储介质的选择和上层分布式文件系统效率的角度出发,提出基于HDFS的内存分布式文件系统架构Mem-HDFS,同时利用集群DataNode的内存和磁盘存储数据,以提高基于HDFS应用的读取性能.并对其进行性能优化,提出一种适应的同分布数据存储策略以及并行读取访问算法.对比实验表明:提出的算法能够较好地降低读取访问延迟. In this paper,we present a storage system,Mem-HDFS,to enable low-latency read accesses.Mem-HDFS integrates the available memory resources in an HDFS clusters to form a cloud storage system.We also present an adaptive identically distributed storage strategy and concurrently read access algorithm.By serving data from memory instead of disks,Mem-HDFS can yield high I/O performance with low latency.
出处 《微电子学与计算机》 CSCD 北大核心 2014年第11期160-166,共7页 Microelectronics & Computer
基金 国家自然科学基金资助项目(61262088 61063042) 新疆维吾尔自治区自然科学基金资助项目(2011211A011)
关键词 内存分布式文件系统 数据存储策略 低延迟 并行读取算法 Memory HDFS data storage strategy low-latency
  • 相关文献

参考文献6

  • 1廖彬,于炯,张陶,杨兴耀,英昌甜.一种适应节能的云存储系统元数据动态建模与管理方法[J].小型微型计算机系统,2013,34(10):2407-2412. 被引量:7
  • 2廖彬,于炯,张陶,杨兴耀.基于分布式文件系统HDFS的节能算法[J].计算机学报,2013,36(5):1047-1064. 被引量:58
  • 3Wang Bai Xu Liutong.Cloud Computing (1)[J].ZTE Communications,2010,8(1):60-62. 被引量:3
  • 4Yifeng Luo,Siqiang Luo,Jihong Guan,Shuigeng Zhou.A RAMCloud Storage System based on HDFS: Architecture, implementation and evaluation[J].The Journal of Systems & Software.2012
  • 5Nitesh Maheshwari,Radheshyam Nanduri,Vasudeva Varma.Dynamic energy efficient data placement and cluster reconfiguration algorithm for MapReduce framework[J].Future Generation Computer Systems.2011(1)
  • 6Michael Armbrust,Armando Fox,Rean Griffith,Anthony D. Joseph,Randy Katz,Andy Konwinski,Gunho Lee,David Patterson,Ariel Rabkin,Ion Stoica,Matei Zaharia.A view of cloud computing[J].Communications of the ACM.2010(4)

二级参考文献41

  • 1Yun D, Lee J. Research in green network for future Inter- net. Journal of KIISE, 2010, 28(1): 41-51.
  • 2Barroso L A, Holzle U. The case for energy-proportional computing. Computer, 2007, 40(12):33-37.
  • 3Ghemawat S, Gobioff H, Leung ST. The Google File Sys tem//Proceedings of the 19th ACM Symposium on Operating System Principles (SOSP2003). New York, USA, 2003: 29-43.
  • 4Dean J, Ghemawat S. MapReduce: Simplifed data processing on large clusters//Proceedings of the Conference on Operat- ing System Design and Implementation (OSDI). San Francis- co, USA, 2004: 137-150.
  • 5Chang F, Dean J, Ghemawat S, et al. Bigtable: A distribu- ted storage system for structured data//Proceedings of the 7th Symposium on Operating Systems Design and Implemen- tation (OSDI). Seattle, USA, 2006:205-218.
  • 6Benini L, Bogliolo A, Mieheli G D. A survey of design tech- niques for system level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Sys- tems, 2000, 8(3): 299 -316.
  • 7Albers S. Energy efficient algorithms. Communications of the ACM, 2010, 53(5): 86-96.
  • 8Srivastava M B, Chandrakasan A P, Brodersen R W. Predic- tive system shutdown and other architectural techniques for energy efficient programmable computation. IEEE Transac- tions on Very Large Scale Integration (VLSI) Systems, 1996, 4(1): 42-55.
  • 9Hwang C H, Wu A C. A predictive system shutdown meth- od for energy saving of event-driven computation. ACM Transactions on Design Automation of Electronic Systems (TODAES), 2000, 5(2) : 241-246.
  • 10Wierman A, Andrew L L, Tang A. Power-aware speed scal- ing in processor sharing systems//Proceedings of the 28th Conference on Computer Communications ( INFOCOM 2009). Rio, Brazil, 2009: 2007-2015.

共引文献64

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部