期刊文献+

基于深度学习的医学图像肺结节检测 被引量:8

Pulmonary nodule detection of medical image based on deep learning
下载PDF
导出
摘要 为了解决传统计算机辅助诊断系统对肺CT图像结节检出率低、假阳性高的问题,提出一种基于深度学习的肺部CT图像结节检测模型.根据肺部CT图像的三维本质特性,首先采用3D Faster R-CNN提取特征,进行候选结节的检测;然后再利用3D卷积神经网络进行假阳性结节去除.该方法在LUNA16数据集上进行了实验,采用国际医学影像领域通用的FROC方法进行评价,统计在不同假阳比例下的敏感性指标,平均FROC数值为82.8%,相比于传统的诊疗方法识别率有显著提升.该模型可用于辅助医生进行肺结节诊断,具有一定的临床应用价值. In order to solve the problem of low detection rate and false positive of lung CT image nodules in traditional computer-aided diagnosis system,a model for pulmonary nodule detection of CT images based on deep learning was proposed.According to the three-dimensional nature of the CT image of the lung,the 3 D Faster R-CNN is used to extract the features and the candidate nodules are detected.Then the 3 D convolutional neural network is used to remove the false positive nodules.The method is tested on the LUNA16 dataset,and is evaluated by the FROC method commonly used in the international medical imaging field.The sensitivity index under different false-positive ratios is counted,and the average FROC value is 82.8%,which is compared with the traditional diagnosis and treatment method.The rate has improved significantly.This model can be used to assist doctors in the diagnosis of pulmonary nodules,and has certain clinical application value.
作者 刘迪 王艳娇 徐慧 LIU Di;WANG Yan-jiao;XU Hui(College of Computer Science,Northeast Electric Power University,Jilin 132012,China;College of Information&Technology,Northeast Normal University,Changchun 130000,China)
出处 《微电子学与计算机》 北大核心 2019年第5期5-9,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61501107) 吉林省教育厅"十三五"科学技术重点项目(JJKH20170109KJ)
关键词 肺结节检测 深度学习 卷积神经网络 假阳性去除 pulmonary nodule detection deep learning convolutional neural network false-positive reduce
  • 相关文献

参考文献1

二级参考文献68

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8.
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition.

共引文献553

同被引文献44

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部