期刊文献+

基于环境迁移的解多目标优化的遗传算法 被引量:4

Model of Multiobjective Optimization based Environment Transfer
下载PDF
导出
摘要 本文借助模拟物种通过环境间的迁移来适应各种自然环境这一生态现象 ,提出了解决多目标优化问题的一种新思路 :基于环境迁移模型的遗传算法 ,并且通过一个数值优化实例验证了该算法的可行性 ,与经典的多目标优化算法相比 ,有其优越性 . Environment Transfer Genetic Algorithms(ab. ETGA) put forward in this paper is a new idea of solving Multiobjective Optimization, which simulates the biology phenomenon that species can adapt natural environment via transferring between different environments. Furthermore, an example of a multiobjective function is given to prove ETGA has advantage compared with classical Genetic Algorithms.
出处 《小型微型计算机系统》 CSCD 北大核心 2004年第1期86-88,共3页 Journal of Chinese Computer Systems
关键词 多目标优化 遗传算法 环境迁移 multiobjective optimization genetic algorithms environment transfer
  • 相关文献

参考文献7

  • 1[1]Wolpert D H, Macready W G. No free lunch theorems for search[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):67~82.
  • 2[2]Fonseca C M, Fleming P J. Genetic algorithm for multiobjective:formulation, discussion and generalization.In:Forest, S. ed[C]. Proceedings of the 5th International Conference on Genetic Algorithms, Morgan Kaufmann,1993.416~423.
  • 3[3]Scrinivas N and Deb K, Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3):221~248.
  • 4[4]Schaffer J D, Some experiments in machine learning using vector evaluated genetic algorithms[D]. Vanderbilt University, Nashville, 1984.
  • 5[5]Fonseca C M and Fleming P J. An overview of evolutionary algorithms in multiobjective optimization[J]. Evolutionary Computation, 1995,3(1):165~180.
  • 6[6]Holland J H. Adaptation in natural and artificial system[M]. MIT Press, 1975.
  • 7[7]Barr R S, Golden B L, Kelly J P, Resende M G C, Stewart W R.Designing and reporting on computational experiments with heuristic methods[C]. Proceedings of the International Conference on Metaheuristics of Optimization, Kluwer Publishing, 1995,1~17.

同被引文献35

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部