摘要
讨论了一类p 调和映照的p能量增长性质,得到了能量增长的特殊估计.在能量慢发散的假定下,证明了从欧氏空间到任何黎曼流形的p 调和映照的一个Liouville型定理,改进了在能量有限假定下的相应结果.
The p -energy growth property is studied for a large class of p -harmonic maps,a special estimation of ( p -energy) growth is obtained.Under the assumptions of slowly divergent energy,the Liouville theorems for p -harmonic maps from Euclidean space to any Riemannian manifolds are proved,which improved the corresponding results where the finite energy is assumed.
出处
《西北师范大学学报(自然科学版)》
CAS
2004年第1期16-19,共4页
Journal of Northwest Normal University(Natural Science)