摘要
讨论了有序Banach空间E中的非线性二阶边值问题-u″(t)=f(t,u(t)), 0≤t≤1,u(0)=u(1)=θ解的存在性,其中f:[0,1]×EE连续.我们在不假定f满足非紧性测度条件及上下解存在的情形下,用算子谱理论与半序方法获得了解的存在性结果.
The existence of solutions for nonlinear second order boundary value problem -u″(t)=f(t,u(t)),0≤t≤1, u(0)=u(1)=θ is discussed in ordered Banach spaces,where f:[0,1]×EE is continuous.Neither using noncompactness measure condition nor assuming the existence of upper and lower solutions,the existence results of solutions are obtained by employing spectral analysis and semi-order method.
出处
《西北师范大学学报(自然科学版)》
CAS
2004年第1期4-7,共4页
Journal of Northwest Normal University(Natural Science)
基金
甘肃省自然科学基金资助项目(ZS031 A25 003 2)
西北师范大学科技创新工程资助项目(NWNU KJCXGC 212)
关键词
Banach空间边值问题
解的存在性
闭凸锥
谱半径
boundary value problem in Banach spaces
existence of solution
closed convex cone
spectral radius