期刊文献+

关联规则挖掘的AprioriTid算法的改进 被引量:1

Improvement of AprioriTid Algorithm for Mining Association Rules
下载PDF
导出
摘要 关联规则挖掘是数据挖掘中常见的一种形式,高效地找出频繁项目集是关联规则挖掘的中心问题.文章在分析生成频繁项目集的AprioriTid算法的基础上,指出了算法中存在由于项目的重复存储而使数据量偏大的问题,提出并证明了“C_(k-1)中支持率小于minsupport的项目集在C_(k-1)中是无用的”的定理,并以此为依据改进了算法.实验表明,改进算法在缩小数据规模方面是行之有效的。 Mining association rule is one of the common forms in data mining, in which the critical problem is to get the frequent itemsets efficiently. AprioriTid algorithm, which is used to construct the frequent itemset, is analyzed in the paper. Based on the analysis, the defect is pointed out that there are too many data due to those items repeatedly saved in the algorithm, and the theorem of the itemset whose support is less than minsupport in Ck-1 is useless in Ck-l is put forward and proved. And then a new algorithm based the theorem is offered. Experiments show that the new algorithm is effective in decreasing data size.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2003年第4期261-264,共4页 Journal of Yantai University(Natural Science and Engineering Edition)
关键词 关联规则挖掘 APRIORITID算法 算法改进 数据挖掘 频繁项目集 mining association rules AprioriTid algorithms improvement of algorithms
  • 相关文献

参考文献3

  • 1朱绍文,王泉德,黄浩,彭清涛,陆玉昌.关联规则挖掘技术及发展动向[J].计算机工程,2000,26(9):4-6. 被引量:40
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[A]. In: Proc of the ACM SIGMOD Int'l Conf on Management of Data[C]. New York: ACM Press, 1993. 207- 216.
  • 3Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. In: Proceedings of the 20th Int'l Conference on Very Large Databases[C]. New York: IEEE Press, 1994. 487-499.

二级参考文献1

  • 1胡宏银,1999年中国智能自动化学术会议论文集,1999年,812页

共引文献39

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部