期刊文献+

空间均匀有理张力样条参数曲线 被引量:5

Uniform Rational T-Spline Parametric Curve in Space
下载PDF
导出
摘要 引入了基于双曲样条函数的、具有张力参数的空间有理等距节点样条参数曲线 ,给出了这种曲线在每个样条子区间上为挠曲线段 (即非平面曲线 )的充分必要条件 ;分析了这种挠曲线段没有尖点、重结点和泛拐点的特性 ;因而在用于空间曲线几何造型时可避免奇异性 .当张力参数趋于零或趋于无穷大时的极限曲线 ,分别是等距节点的有理三次B样条曲线和其控制多边形 ,故张力参数可用于调节曲线的光顺性 .还给出了将权系数用于曲线插值的一种方法 . Introduced is a kind of space uniform rational spline curve, which possesses tension parameters and is based on hyperbolic spline functions. A necessary and sufficient condition for the curve being torsion curve in every sub-interval is given. Meanwhile the properties that there are no cusp, no loop and no generalized inflection on such curves are analyzed; thus the singularities using the curve in geometric modeling can be avoided. Further, it is found that the limit curve is a uniform rational cubic B-spline curve or the curve’s control polygon when its tension parameters tend to zero or infinity respectively. So the tension parameters can be used to adjust the fairness properties of such curves. Besides, an approach to using weight factors in curve interpolation is also presented.
出处 《计算机学报》 EI CSCD 北大核心 2003年第12期1776-1780,共5页 Chinese Journal of Computers
基金 陕西省自然科学研究计划项目 (2 0 0 0SL0 8)资助
关键词 几何造型 张力参数 样条曲线 插值 CAGD 计算机辅助设计 空间有理张力样条参数曲线 geometric modeling tension parameters spline curve interpolation
  • 相关文献

参考文献5

  • 1[1]Schweikert D G. An interpolation curve using spline in tension.Journal of Mathmatical Physics, 1966, 45: 312~317
  • 2[3]Schumaker L L. On hyperbolic splines. Journal of Approximation Theory, 1983, 38(2): 144~146
  • 3[4]Barsky B A. Exponential and polynomial methods for applying tension to an interpolating spline curve. Computer Vision,Graphics & Image Procesing, 1984, 27(1):1~18
  • 4[6]Barsky B A. The Beta Spline: A local representation based on shape parameters and fundamental geometric measures [Ph D dissertation]. Department of Computer Science, University of Utah, Salt Lake City, Utah, 1981
  • 5[7]Cohen E. A new local basis for designing with tensioned splines.ACM Transactions on Graphics, 1987,6(2): 81~122

同被引文献35

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部