期刊文献+

渐近非自治Lotka-Volterra竞争系统正解的渐近性 被引量:1

Asymptotic property of positive solution to asymptotic nonautonomous Lotka-Volterra competing system
下载PDF
导出
摘要 对参数与时间有关且分别渐近接近于周期函数的n维非自治Lotka Volterra竞争系统进行了研究,如果相应的周期系统存在唯一全局渐近稳定的正周期解,那么该系统的任意一个正解都渐近接近于相应周期系统的严格正周期解. Non-autonomous n-competing Lotka-Volterra system with time-dependent parameters, which approdimate separately and asymptotically to periodic functions, is investigated. It is shown that any one positive solution to this system would approximate asymptotically to a positive periodic solution to its corresponding periodic system if within the latter there were unique globally asymptotic stable positive periodic solution.
出处 《甘肃工业大学学报》 北大核心 2003年第4期129-131,共3页 Journal of Gansu University of Technology
基金 国家自然科学基金(19871036) 甘肃省自然科学基金(ZS011 A25 007 Z)
关键词 渐近非自治Lotka-Volterra竞争系统 正周期解 渐近性 周期函数 positive solution positive periodic solution asymptotic approximation
  • 相关文献

参考文献5

  • 1[1]Gopalsarmy K. Gobal asymptotic stability in a periodic LotkaVolterra system [J]. J Austral Math Soc Ser, 1985, (B27) : 66-72.
  • 2[2]Tineo A,Alvarez C. A different consideration about the globally asymptotically stable solution of the periodic n-competing species problem [J]. J Math Anal Appl, 1991, (159): 44-50.
  • 3[3]Pen Qiuliang,Chen Lansun. Asymptotic behavior of the nonautonomous two-species Lotka-Volterra competition model [J].Computers Math Applic, 1994, 27 (12): 53-60.
  • 4桂占吉,陈兰荪.非自治Volterra-Lotka竞争方程的渐进行为[J].数学物理学报(A辑),2002,22(4):465-470. 被引量:5
  • 5[5]Ahmad S, Lazer A C. On the nonautonomous N-competing species [J]. Applicable Analysis, 1995,157 (3) : 309-323.

二级参考文献6

  • 1Pen Qiuliang,Chen Lansun.Asymptotic behavior of the nonautonomous two-species Lotka-Volterra competition model[].Computers and Mathematics With Applications.1994
  • 2Tineo A,Alvarez C.A different consideration about the globally asymptotically stable solution of the periodic ncompeting species problem[].Journal of Mathematical Analysis and Applications.1991
  • 3Ahmad S,Lazer A C.On the nonautonomous N-competing species problems[].Applicable Analysis.1995
  • 4Gopalsamy K.Global asymptotic stability in a periodic Lotka-Volterra system[].J Austral Math Soc Ser.1985
  • 5Freedman H I,Sree H R V,So J W H.Asymptotic behavior of a time-dependent singe-species model[].Analysis.1989
  • 6Chen Lansun.Mathematical Model and Methods in Ecology[]..1988

共引文献4

同被引文献6

  • 1孟新柱,程惠东,张同迁.一类Lotka-Volterra非同步扩散捕食-竞争系统的概周期解[J].兰州理工大学学报,2005,31(5):138-142. 被引量:2
  • 2MAURER S M, HUBERMAN B A. Competitive dynamics of web sites [J]. J Econom Dynam Control, 2003 (11-12): 2195- 2206.
  • 3XIAO M,CAO J. Stability and hopf bifurcation in a delayed competitive web sites model [J]. Physics Letters A, 2006,353: 138-150.
  • 4SONG Y, WEI J. Local Hopf bifurcation and global periodicsolutions in a delayed predator-prey system [J]. J Math Appl, 2005,301:1-21.
  • 5YAN X, LI W. Hopf bifurcation and global periodicsolutions in a delayed predator-prey system [J]. Appl Math Comput, 2006, 177:427-445.
  • 6HASSARD B, KAZARINOFF D,WAN Y. Theory and applications of Hopfbifurcation [M]. Cambridge: Cambridge University Press, 1981.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部