期刊文献+

一类特殊类型子空间上Ritz对的性质及其应用

ON THE RITZ PAIRS WITH RESPECT TO A KIND OF SPECIAL SUBSPACES WITH AN APPLICATION
原文传递
导出
摘要 §1.引言 设A∈RM×N,定义增广矩阵 (A~)=(O A AT O),(1) 其中上标T表示转置.不失一般性,假设M≥N,设σi,i=1,2,…,N是A的奇异值,ui和ui分别是对应的左右奇异向量,奇异值按从小到大或从大到小的顺序排列,则A的特征值恰好为±σi,i=1,2,…,N和M-N个零,±σi对应的特征向量分别为1/√2(uT i,vT i)T和1/√2(uT i,-vT i)T. We study some properties of the Ritz pairs of an argumented matrix with respect to a kind of special subspaces. It is proved that the projected eigenproblem can be reduced to a half dimensional singular value problem. As an important application, this equivalence allows one to compute a partial SVD of a large scale matrix and refined shifts for use within an implicitly restarted refined bidiagonal-ization Lanczos algorithm (IRRBL), so that the computational cost and the storage requirement can be saved significantly.
出处 《数值计算与计算机应用》 CSCD 北大核心 2003年第4期257-261,共5页 Journal on Numerical Methods and Computer Applications
基金 国家重点基础研究专项基金(G19990328)
关键词 Ritz对 增广矩阵 标准正交基 特征值 奇异值 subspace, argumented matrix, Ritz pair, refined Ritz vector, eigenvalue, singular value, eigenvector, singular vector, singular triplet
  • 相关文献

参考文献1

二级参考文献7

  • 1Zhongxiao Jia.Generalized block Lanczos methods for large unsymmetric eigenproblems[J]. Numerische Mathematik . 1998 (2)
  • 2Arnoldi,W. E.The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Journal of Applied Mathematics . 1951
  • 3Jia,Z.Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems. Linear Algebra and Its Applications . 1997
  • 4Sleijpen,G. L. G.Van der Vorst, H.A. A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appliance . 1996
  • 5Jia,Z.A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems. Linear Algebra and Its Applications . 1998
  • 6Morgan,R. B.Computing interior eigenvalues of large matrices. Linear Algebra and Its Applications . 1991
  • 7Jia,Z.The convergence of generalized Lanczos methods for large unsymmetric eigenproblems, SIAM J.Matrix Anal. Appliance . 1995

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部