期刊文献+

求解二维结构-声耦合问题的一种直接方法 被引量:4

DIRECT SOLUTION TO 2-D SOUND-STRUCTURE INTERACTION PROBLEMS
下载PDF
导出
摘要 本文基于传递矩阵法 (TMM)和虚拟边界元法 (VBEM ) ,提出了一种求解在谐激励作用下二维结构 -声耦合问题的直接法。文中对任意形状的二维弹性环建立了一阶非齐次运动微分方程组 ,便于用齐次扩容精细积分法求解 ,对于含有任意形状孔穴的无穷域流体介质的Helmholtz外问题 ,采用复数形式的Burton_Miller型组合层势法建立了虚拟边界元方程 ,保证了声压在全波数域内存在唯一解。根据叠加原理并结合最小二乘法 ,提出了一种耦合方程的直接解法 ,由于该方法不存在迭代过程 ,因而具有较高的计算精度和效率。文中给出了二个典型弹性环在集中谐激励力作用下声辐射算例 。 Based on transfer matrix method(TMM)and virtual boundary element method(VBEM),proposed a direct solution to 2-D sound-structure interaction problem under harmonic excitation is proposed.The first-order non-homogeneous motion equations that are formulated for an elastic ring with arbitrary geometrical shape can be easily solved by the homogenized direct integration with high precision.The Burton-Miller's complex number combined-lay potential method is adopted for establishing the VBEM equations of exterior Helmholtz problem with complex geometrical cavity in infinite fluid domain,thus,the uniqueness of acoustic pressure can be ensured for all wave-numbers.By virtue of superposition principle combined with the least square approximation,a direct solution to the coupled equations is presented.Owing to noniterative procedure,higher accuracy and efficiency can be achieved by using the method proposed in the paper,The examples of acoustic radiation from two typical fluid-loaded elastic rings under a harmonic concentrated force are presented.Numerical results show that the proposed method is more effcient than the mixed FE-BE method in common use.
出处 《振动与冲击》 EI CSCD 北大核心 2003年第4期40-44,31,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目 (项目编号 :1 0 1 72 0 38) 广西工学院科研基金资助项目
关键词 传递矩阵法 TMM 虚拟边界元法 VBEM 微分方程 结构-声耦合问题 sound-structure,acoustic radiation,VBEM,transfer matrix method,direct solution
  • 相关文献

参考文献4

二级参考文献15

共引文献548

同被引文献14

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部