期刊文献+

流化床压力波动多尺度多分形特征 被引量:19

Characteristics of Multi-scale and Multi-fractal of Pressure Signals in a Bubbling Fluidized Bed
下载PDF
导出
摘要 对流化床不同测量位置的压力波动信号用Daubechies二阶小波在1~9尺度下进行分解,并分别对分解的信号进行R/S分析.研究发现,分解的信号可由多尺度方法得到较好的理解.1、2尺度下的细节信号只有一个明显的Hurst指数H,且H<0.5,表现为反持久性的更随机的特征,说明1、2尺度下的细节信号主要反映了气流与颗粒之间的微尺度作用.3~9尺度下的细节信号都具有两个Hurst指数H,分别大于0.5和小于0.5,表现为多分形特征,H>0.5代表了具有正持久性的气泡相的运动;H<0.5代表了具有反持久性的乳化相的运动,说明3~9尺度的细节信号反映了介尺度作用的乳化相和气泡相的相互作用.而9尺度下的概貌信号只有一个Hurst指数H,且H>0.5,表现为正持久性,说明9尺度下的概貌信号主要反映了颗粒流体系统与外界边界之间的宏尺度作用.各尺度信号的能量分布表明,压力波动信号主要体现了介尺度的乳化相和气泡相之间的相互作用. The complexity of fluctuation dynamics in a bubbling fluidized bed with 0.3 m in diameter and 3 m in height was studied by using multi-scale and R/S analysis method. The Daubechies second order wavelet was firstly applied to decompose pressure signals at different measurement locations to 1-9 scale detail signals and 9 scale approximation signal. Then, Hurst analysis was used to analyze multi-fractal characteristics of different scale signals. The results show that 1-2 scale detail signals have only one Hurst exponent smaller than 0.5 corresponding to micro-scale interaction between particles and fluid and particles; 3-9 scale detail signals have two Hurst exponents one smaller than 0.5 and one larger than 0.5 corresponding to meso-scale interaction of the dilute phase and the dense phase, respectively; 9 scale approximation signal has only one Hurst exponent which larger than 0.5 corresponding to macro-scale interaction of the particle-fluid suspension within its boundaries. Therefore, measured pressure signals were resolved to multi-scale signals such as micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy profile of different scale signals, we found that pressure fluctuations mainly reflect meso-scale interaction between the emulsion phase and the bubbling phase.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2003年第6期648-654,共7页 Journal of Chemical Engineering of Chinese Universities
关键词 压力波动 R/S分析 多尺度 多分形 Fractals Pressure Signal processing
  • 相关文献

参考文献16

  • 1赵贵兵,陈纪忠,阳永荣.Daubechies小波对流化床压力波动的分解研究[J].高校化学工程学报,2003,17(3):272-278. 被引量:25
  • 2Li Jing-hai, Kwauk Mooson. Particle-Fluid Two-Phase Flow - The Energy-Minimization Multi-Scale Method [M]. Beijing:Metallurgical Industry Press, 1994.
  • 3Zhao G B, Chen J Z, Yang Y R. Predictive model and deterministic mechanism in a bubbling fluidized bed [J]. AIChE J, 2001,47(7): 1524-1532.
  • 4Fan L T, Neogi D, Yashima M, Nassar R. Stochastic analysis of a three-phase fluidized bed: fractal approach [J]. AIChE J,1990, 36(10): 1529-1535.
  • 5Franca F, Acikgoz M, Jr Lahey R T, Clausse A. The use of fractal techniques for flow regime identification [J]. Int J Multiphase Flow, 1991, 17(4): 545-552.
  • 6Drahos J, Bradka F, Puncochar M. Fractal behaviour of pressure fluctuations in a bubble column [J]. Chem Eng Sd, 1992,47(15/16): 4069-4075.
  • 7Bai D, Issangya A S, Grace J R. Characteristics of gas-fluidized beds in different flow regimes [J]. Ind Eng Chem Res, 1999,38:803-811.
  • 8Bakshi B R, Zhong H, Jiang P, Fan L S. Analysis of flow in gas-liquid bubble columns using multi-resolution methods [J].Trams IChE, 1995, 73, Part A: 608-614.
  • 9Lu X, Li H. Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed [J]. Chem Eng J, 1999, 75:113-119.
  • 10Li J. Compromise and resolution-Exploring the multi-scale nature of gas-solid fluidization [J]. Powder Technology, 2000, 111:50-59.

二级参考文献12

  • 1CHEN Gong(陈珙) WANG Bao-liang(王保良).YANG Jiang(杨江) LI Hai-qing(李海青).Application of wavelets transform to the fuzzy identification of gas-solid two-phase flow regimes(基于小波变换的气液两相流流型模糊辨识)[J].J Chem Eng of Chinese Univ(高校化学工程学报),1999,13(4):303-308.
  • 2Bakshi B R, Zhong H, Jiang P, Fan L S. Analysis of flow in gas-liquid bubble columns using multi-resolution methods [J].Trans IChE, 1995, 73, Part A: 608-614.
  • 3Ran J, Mao Q, Li J, Lin W. Wavelet analysis of dynamic behavior in fluidized beds [J]. Chemical Engineering Science, 2001,56: 981-988.
  • 4Li J, Compromise and resolution--Exploring the multi-scale nature of gas-solid fluidization [J]. Powder Technology, 2000, 111:50-59.
  • 5Lu X, Li H. Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed [J]. Chemical Engineering Journal,1999, 75:113-119.
  • 6Zhou H, Lu J, Lin L. Turbulence structure of the solid phase in transition region of a circulating fluidized bed [J]. Chemical Engineering Science, 2000, 55: 839-847.
  • 7He Z, Zhang W, He K, Chen B. Modeling pressure fluctuations via correlation structure in a gas-solids fluidized bed [J]. AIChE J, 1997, 43(7): 1914-1920.
  • 8Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Comm Pure Appl Math, 1988, 41 : 909-996.
  • 9Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans Pattern Anal Mach Intell, 1989, 11(7): 674-693.
  • 10任金强,李静海.小波在分析流态化系统多尺度动态行为中的应用[J].化工冶金,1999,20(1):38-43. 被引量:5

共引文献24

同被引文献246

引证文献19

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部