期刊文献+

材料生长与变形的连续介质模型:平衡方程与边界条件 被引量:2

Continuum Model for Growth and Deformation of Materials:Equilibrium Equations and Boundary Conditions
下载PDF
导出
摘要 本文探讨了生长变形体连续介质模型的平衡理论框架。文中首先证明了广义输运定理,根据这个定理,推导了生长变形体广义平衡方程的一般形式及其生长边界条件,并导出反映生长边界面对平衡影响的生长耦合函数。在此基础上,具体讨论了质量、动量、动量矩以及能量平衡方程,并对其中相伴出现的一些新的物理量进行了评述;此外,还根据非平衡热力学理论的局域平衡假设建立了描述生长变形体热力学过程的熵不等式。这些方程唯象反映了生长变形体在运动、变形与生长过程中各物理量之间的耦合关系与平衡规律。 The equilibrium equations of growing deformable body based on the continuum model were established. Firstly, the so-called material accretion derivative was defined. Based on this definition, a general form of the equilibrium equation and its growing boundary condition describing motion of the growing deformable body were deduced. From the process of deduction, the concept of coupling function of growth was derived, which reflects the influence of the accretive boundary surface. Then, the equilibrium equations, including the equation of mass, momentum, moment of momentum and energy, were discussed. Also, the entropy inequality was given according to the assumption of local equilibrium of non-equilibrium thermodynamics. These equations characterize the equilibrium relationships in the growth and motion of body.
作者 黄再兴
出处 《力学季刊》 CSCD 北大核心 2003年第4期494-499,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10002007)
关键词 生长 变形 连续介质 平衡方程 生长边界条件 生长耦合函数 growth deformation continuum equilibrium equations accretive boundary condition coupling function of growth
  • 相关文献

参考文献13

  • 1EdelenDGB.非局部场论(戴天民译)[M].南京:江苏科学技术出版社,1980..
  • 2MurchG E Hassen P主编 刘治国等译.晶态固体中的扩散[A].Hassen P主编,刘治国等译.材料的相变[C].科学出版社,1998..
  • 3Naumov V E. Mechanics of growing deformable solids: A Review [J]. J Eng Mech, 1994, 120(2):207-220.
  • 4Taber L A. Biomechanics of growth, remodeling, and morphogenesis [J]. Appl Mech Review, 1995, 48(8)z487-545.
  • 5Cowin C S, Hegedus H D. Bone Remodeling Ⅰ: Theory of adaptive elasticity [J]. J of Elasticity, 1976, 6(3):313-325.
  • 6Rodriguez E K, Hoger A, McCulloch A D. Stress-dependent finite growth in soft elastic tissues [J]. J Biomechanics, 27, 1994, 27(4):455-467.
  • 7Epstein M, Maugin G A. Thermomechanics of volumetric growth in uniform bodies [J]. Int J Plasticity, 2000, 16(7-8):951-978.
  • 8Brown C B, Goodman L E. Gravitational stresses in accreted Bodies [J]. Proc Roy Soc Lond A, 276(1367) :571-576.
  • 9Skalak R. Growth as a finite displacement field [C]. Proceedings of IUTAM Symposium on Finite Elasticity (ed by Carlson D E and Shield R T), Matinus Nijhoff Publishers, The Hague, 1982,347-355.
  • 10Arutyunyan N K, Naumov V E, Radaev Y N. A mathematical model of a dynamically accreted deformable body, Part 1: Kinematics and measure of deformation of the growing body [J]. Mech Solids, 1990, 25(6):86-99.

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部