期刊文献+

金属基纳米复合材料等效弹性模量的均匀化方法数值模拟 被引量:4

Numerical Simulation of Equivalent Elastic Modulus for Metal Matrix Nano-composite Materials Using Homogenization Method
下载PDF
导出
摘要 均匀化理论利用位移场双尺度渐近展开建立有限元列式,本文将其与有限元通用程序相结合,应用于金属基复合材料的弹性本构数值模拟。通过对不同尺度增强相金属基复合材料等效模量的数值模拟,考察了均匀化方法的适用情况。数值计算结果表明,对常规尺度增强相金属基复合材料,均匀化方法可以较准确地预测其等效弹性模量;对纳米增强相金属基复合材料,该方法仍可给出较好的预测,但存在某种程度的系统偏差。通过对纳米尺度增强机理的分析讨论,认为纳米增强相与基体材料间的界面效应可能有别于连续介质假设,指出可以考虑采用离散原子-连续介质耦合模型改进数值模拟结果。 The homogenization method is well established on the basis of the double-scale asymptotic expansion of the displacement field. In conjunction with finite element method, it has been successfully applied to predict the macroscopic properties of metal matrix composite materials. Its adequacy was investigated through case studies for metal matrix composites reinforced with particulate of different size. Numerical simulation had been conducted to obtain the equivalent elastic modulus for composites. In comparison with experimental data, it is found that for normal metal matrix composites the homogenization method can give an excellent prediction. As, for nano-composites, this method works still well and produces satisfactory results of acceptable accuracy. Nevertheless, deviation to a certain degree from the experimental results has been observed. Viewing on the mechanism of the reinforcement in nanoscale, it is considered that the interface effects between the reinforcement and the metallic matrix for a nano-composite may be different from that for a normal composite. It is suggested that the atomistic-continuum interface coupling model may be the way for a further improvement.
出处 《力学季刊》 CSCD 北大核心 2003年第4期567-571,共5页 Chinese Quarterly of Mechanics
基金 中科院中国科技大学材料力学行为和设计重点实验室资助项目
关键词 金属基复合材料 纳米复合材料 均匀化理论 等效模量 metal matrix composite materials nano-composite homogenization method equivalent modulus
  • 相关文献

参考文献9

  • 1崔俊芝,曹礼群.基于双尺度渐近分析的有限元算法[J].计算数学,1998,20(1):89-102. 被引量:30
  • 2文玉华,周富信,刘曰武.纳米材料的研究进展[J].力学进展,2001,31(1):47-61. 被引量:45
  • 3张弜,李宗全.纳米复合材料力学性能的研究[J].材料科学与工程,2001,19(4):122-126. 被引量:13
  • 4Bendsqu M P, Kikuki N. Generation optimal topologies in structural design using a homogenization method[J]. Comp Meth, 1988, 71 :197.
  • 5Hassani B, Hinton E. A review of homogenization and topology opimization Ⅱ -Analytical and numerical solution of homogenization[J].Computers & Structures, 1998, 695 719-738.
  • 6Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method[J]. Int J Solids Structures, 1995, 132(1):40-43.
  • 7Lynch C T. CRC handbook of material science[M]. Cleceland: CRC Press, 1975(2) : 392.
  • 8Tvergaard V. Analysis of tensile properties for a whisker-reinforced metal matrix composite[J]. Acta Metall Material, 1990, 38:185-194.
  • 9EI-Eskandarany S M. Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites[J]. Journal of Alloy and Compounds,1998, 279:263-271.

二级参考文献17

共引文献85

同被引文献27

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部