期刊文献+

用小波变换去除多普勒频率估计野值点的方法 被引量:8

A Method of Removing the Outliers of Doppler Frequency Using Wavelet Transform
下载PDF
导出
摘要 研究去除多普勒频率估计野值点的方法.在分析野值点统计特性及小波域分布特性的基础上,通过利用野值点和多普勒频率在小波域上系数的不同,首先对各尺度系数进行分段,然后对不同段的系数设定不同阈值进行处理,从而达到去除野值点和恢复多普勒频率的目的.实验结果表明,去除野值点后的结果与原数据的残差中不包含多普勒频率的趋势分量,对后续的脱靶量参数估计没有任何不利影响,去除了随机测量误差与野值点的影响. A method of removing the outliers of Doppler frequency is presented. Based on the analysis of statistical property of outliers and their distributions in the wavelet domain, different characteristics of wavelet coefficients are found between the outliers and ideal Doppler frequency. On applying threshold method to the wavelet coefficients piecewise, the outliers are successfully removed. Experimental results show the residues between the original and the cleaned data do not contain the component of Doppler frequency. Effects of the stochastic errors and outliers, have been removed and this is helpful to the successive estimation and optimization of miss distance parameters.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2003年第5期629-632,共4页 Transactions of Beijing Institute of Technology
关键词 小波变换 多普勒频率 野值点 wavelet transform Doppler frequency outliers
  • 相关文献

参考文献7

  • 1吴嗣亮. 矢量脱靶量测量系统数据处理方法的研究与实践[D]. 北京:北京理工大学电子工程系,1998.Wu Siliang. Study on data processing technique for vector miss distance measurement system and its practice[D]. Beijing: Department of Electronic Engineering, Beijing Institute of Technology, 1998.(in Chinese)
  • 2范金城,胡峰.动态测量数据的抗扰性分析研究[J].数理统计与应用概率,1996,11(3):244-248. 被引量:25
  • 3胡绍林,孙国基.靶场外测数据野值点的统计诊断技术[J].宇航学报,1999,20(2):68-74. 被引量:57
  • 4Yu Y, Weaver J B, Healy D M, et al. Wavelet transform domain filters: A spatial selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994, 3(6):747-758.
  • 5Mallat S G, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2):617-643.
  • 6Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3):613-627.
  • 7Lavielle M. Detection of multiple changes in a sequence of dependent variables[J]. Stochastic Processes and Their Applications, 1999, 83(2):79-102.

二级参考文献23

共引文献71

同被引文献64

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部