期刊文献+

平面非牛顿流体在m>1时的径向流动 被引量:1

The radical flow of plane non-Newtonian fluid when m>1
下载PDF
导出
摘要 讨论平面非牛顿流体(例如高粘度高含腊量的地下石油)在m>1时的径向流动.作者首先给出了问题的数学模型,它是退缩的自由边值问题.然后得到了该问题的近似问题古典解的存在唯一性.当油井边的压力梯度是常值函数时,该问题古典解的存在唯一性也得到了. The radical flow of plane non-Newtonian is studied. The existence and uniqueness of the classical solution for its approximation problem is proved by a parabolic quasi-variational inequality. If the pressure gradient of the well is constent, the existence and uniqueness of the classical solution for itself is obtained.
出处 《纯粹数学与应用数学》 CSCD 2003年第4期379-384,共6页 Pure and Applied Mathematics
关键词 非牛顿流体 自由边值问题 拟变分不等式 径向流动 non-Newtonian fluid, free boundary problem,quasi-variational inequality, radical flow
  • 相关文献

参考文献7

  • 1白东华.具产出压力的幂律流体的流动问题[J].四川大学学报(自然科学版),1990,27(1):16-26. 被引量:7
  • 2Bai Donghua. A free boundary problem governed by nonlinear degenerate equations of parabolic type [J]. J partial Differential Equations, 1992,5(2):37~52.
  • 3Pascal H. some problem related to the quantitative evaluation of physical properties of the porous medium from flow tests with non-Newtonian fluid [J]. Int. J. Engng. Sci, 1985,23 (3): 307~ 318.
  • 4Ladyzenkaya O A, Solonnikov V A, Ural'ceva N N. Linear and quasilinear elliptic equations[M].Translated by Scripta Teachnica, Inc. 1986.
  • 5Bai Donghua, Tang Xianjiang. A parabolic quasi-variational inequlity connected with non-stationary filtration problem[J]. Chinese Annals of Mathematics, 1985,6(6):637~644.
  • 6Ladyzenkaya O A, Solonnikov V A,Ural'ceva N N. Linear and quasilinear equations of parabolictype[M]. Trans. Math. Mono. 23, American Math. Soc,Providence RI,1968.
  • 7Friedman A,Jensen R. A parabolic quasi-variational inequlity arising in hydroulics[J]. Anna Scuala,Norm sup pisa, 1975,1 (11): 421~468.

二级参考文献2

  • 1秦瑜,四川师范大学学报,1988年,2期
  • 2白东华,数学年刊.A,1935年

共引文献6

同被引文献8

  • 1白东华,谭启建.一类具两条自由边界的自由边值问题[J].四川大学学报(自然科学版),1993,30(2):154-163. 被引量:4
  • 2Evans L C. A free boundary problem: The flow of two immiscible fluids in a one-dimensional porous medium, I [J]. Indiana Univ. Math. J., 1977, 26(5):914-932.
  • 3Liang J. The one-dimensional quasi-linear verigin problem [J]. J. Partial Differential Equations, 1991, 4(2):74- 96.
  • 4Kamynin L I. The method of heat potentials for a parabolic equation with discontinuous coefficients [J]. Sib, Mat. Z., 1963, 4:1071-1105(in Russian).
  • 5Ladyzenskaya O A, Solonnikov V A, Ural'ceva N N. Linear and Quasi-linear Equations of Parabolic Type [M]. USA:American Mathematical Society, Providence, RI, 1968.
  • 6Ladyzenskaya O A, Ural'ceva N N. Linear and Quasi-Linear Elliptic Equations [M]. New York: Academic Press, 1968.
  • 7Ladyzenskaya O A, Ryvkind V Ja, Ural'ceva N N. Solvability of diffraction problems in the classical sense [J]. Trudy Mat. Inst. Steklov. 1966, 92:116-146(in Russian).
  • 8白东华,谭启建.具间断系数的拟线性抛物型方程的初边值问题[J].四川大学学报(自然科学版),1991,28(1):1-14. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部