期刊文献+

垂直布里奇曼法CdZnTe晶体生长过程的数值分析 被引量:10

Numerical modeling of CdZnTe-VBM crystal growth
下载PDF
导出
摘要 模拟计算了半导体材料CdZnTe布里奇曼法单晶体生长过程,分析了熔体的过热温度、坩埚侧面强化换热以及坩埚加速旋转(ACRT)等因素对结晶界面的形态和晶体组分偏析的影响,结果表明:当熔体的过热温度减小时,熔体中自然对流的强度显著降低,固液界面的凹陷深度有所增加,晶体的轴向等浓度区显著加长,而晶体组分的径向偏析明显增大.坩埚的侧面强化换热增加了自然对流强度,也增大了固液界面的凹陷,但是对溶质成分的偏析影响较小.坩埚加速旋转引起的强迫对流强度远大于自然对流,显著增大了固液界面的凹陷,使熔体中的溶质分布成为均一的浓度场,显著减小了晶体组分的径向偏析,增加了晶体组分的轴向偏析. A numerical simulation study was carried out for CdZnTe vertical Bridgman method (VBM) crystal growth. Effects of the melt super-heat temperature, the reinforcement of the crucible lateral heat radiation, and accelerated crucible rotation technique (ACRT) on the melt convection, the solid-liquid interface concavity and solute segregation of the crystal.were investigated. When the super-heat temperature of the melt is reduced, the melt convection becomes weak obviously, the axial iso-concentration zone of the crystal increases greatly, and the radial segregation increases a lot. The reinforcement of the crucible lateral heat radiation results in the enhancement of the convection, increases the concavity of the solid-liquid interface a little, but hardly affect the solute segregation of the crystal. The forced convection induced by ACRT is much more powerful than the natural convection. It greatly increases the concavity of the solid-liquid interface and the axial segregation of the crystal, while decreases the radial one extraordinarily. The radial solute segregation of the crystal with ACRT is near to zero.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2003年第6期649-658,共10页 Chinese Journal of Materials Research
基金 国家自然科学基金No.50006016 山东省自然科学基金No.Y2000G07
关键词 材料科学基础学科 晶体生长 数值模拟 组分偏析 传热传质 foundational discipline in materials science, crystal growth, numerical modeling, solute segregation, heat and mass transportation
  • 相关文献

参考文献22

  • 1D.H.Kim, R.A.Brown, Models for Convection and Segregation in the Growth of HgCdTe by the Vertical Bridgman Method, J.Cryst. Growth, 96, 609(1989)
  • 2D.H.Kim, R.A.Brown, Modeling of the Dynamics of HgCdTe Growth by the Vertical Bridgman Method,J.Cryst. Growth, 114, 411(1991)
  • 3C.Pafceniuk, F.Weinberg, I.V.Samarasekera, Measured Critical Resolved Shear Stress and Calculated Temperature and Stress Fields during Growth of CdZnTe, J.Cryst. Growth, 119, 61(1992)
  • 4S.Kuppurao, S.Brandon, J.J.Derby, Modeling the Vertical Bridgman Growth of Cadmium Zinc Telluride I.Quasi-Steady Analysis of Heat Transfer and Convection, J.Cryst. Growth, 155, 93(1995)
  • 5C.Martinez-Tomas, V.Munoz, R.Triboulet, Heat Transfer Simulation in a Vertical Bridgman CdTe Growth Configuration, J.Cryst.Growth, 197, 435(1999)
  • 6C.Martinez-Tomas, V.Munoz, CdTe Crystal Growth Process by Bridgman Method: Numerical Simulation,J.Cryst. Growth, 222, 435(2001)
  • 7R.Cerny, A.KalbáC, P.Prikryl, Computational Modeling of CdZnTe Crystal Growth from the Melt, Computational Materials Science, 17(1), 34(2000)
  • 8R.Cern, P. Jelinek, P.Prikryl, Computational Modeling of Turbulent Melt Flow in CdZnTe Crystal Growth,Computational Materials Science, 25(3), 316(2002)
  • 9T.S.Lee, S.B.Lee, J.M.Kim, Vertical Bridgman Techniques to Homogenize Zinc Composition of CdZnTe Substrates, J. Electronic Materials, 24, 1057(1995)
  • 10P.Capper, Bridgman Growth of CdxHg1-xTe-A Review, Prog. Cryst. Growth and Gharact., 19,259(1989)

同被引文献78

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部