期刊文献+

β-环糊精淀粉类树脂的制备和电流变性能 被引量:3

Preparation and electrorheological properties of β-cyclodextrin-starch resin polymer
下载PDF
导出
摘要 分别由不含淀粉、含水溶性淀粉或不溶性淀粉的β-环糊精与环氧氯丙烷的聚合反应,制备出3种环境友好的β-环糊精交联聚合物和淀粉类树脂(NS-β-CDP、WSS-β-CDP和CLS-β-CDP)用FT-IR和激光Raman光谱对其进行了分析,发现β-环糊精交联聚合物以及β-环糊精淀粉类树脂均保留了环糊精的空腔结构.用NS-β-CDP、WSS-β-CDP和CLS-β-CDP分别与二甲基硅油配制了电流变液,研究了电流变活性。结果表明,含淀粉的聚合物的电流变活性和电场耐受能力均比NS-S-CDP的高。淀粉参与共聚后,淀粉的柔性对环糊精聚合物的刚性腔体具有很好的分散作用。 Three green β-cyclodextrin crosslinked polymer and starch resins with β-cyclodextrin (NS- β-CDP, WSS- β-CDP and CLS- β-CDP) were prepared by copolymerization onto a mixture of β-CD and epichlorohydrin in the absence of starch or in the presence of water-soluble and water-insoluble starch, respectively. The structure of these polymers was characterized by FT-IR and laser Raman spectrophotometers. The results demonstrated that all of these polymers kept the original structural character of β-CD and also showed that copolymerization between starch and β-CD occured. In this paper, three electrorheological (ER) fluids were prepared by the dispersion of NS- β-CDP, WSS- β-CDP and CLS- β-CDP in silicone, respectively. As a result, it was obviously observed that both WSS- β-CDP and CLS- β-CDP ER fluids have higher ER effect and better electricity-fast properties than that of NS- β-CDP. A typical example is that the yield stress of WSS- β-CDP can be 6.2 kPa under a dc electrical field of 4 kV/mm at room temperature, and furthermore it displays a high ER performance at 95 CCCC. This may be due to CD rings which are dispersed by starch in the copolymers.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2003年第6期571-576,共6页 Chinese Journal of Materials Research
基金 国家自然科学基金59832090 50272054 国家杰出青年科学基金50025207
关键词 复合材料 电流变液 Β-环糊精交联聚合物 淀粉 composite, electrorheological fluids,β-cyclodextrin crosslinked polymer, starch
  • 相关文献

参考文献15

  • 1S.L.Vieira, M.Nakano, Transient Behavior of the Microstructure of in Shear Flow Mode. in Proceedings of the 7th International Conferenxe on ER fluids and Magneto-rheological Suspensions, ed. by R.Tao (World Scientific, Singapore, 2000) p.152~160
  • 2T.Haleey, Electrorheological Fluids, Science, 258, 761(1992)
  • 3S.G.Kim, J.W.Kim, W.H.Jang, H.J.Choi, M.S.Jhon, Electrorheological Characteristics of Phosphate Cellulose-Based Suspensions, Polymer, 42, 5005(2001)
  • 4T.Hao, Electrorheological Suspensions, Advances in Colloid and Interface Science, 97, 1(2002)
  • 5T.Hao, Electrorheological Fluids, Advances Materials, 13, 1847(2001)
  • 6赵晓鹏,尹剑波,向礼琴,赵乾.稀土改性二氧化钛电流变液的性能[J].材料研究学报,2000,14(6):604-608. 被引量:20
  • 7X.P. Zhao, J.B.Yin, Preparation and Electrorheological Fluids Characteristic of Rare-Earth-Doped TiO2Suspensions, Chem. Mater., 14, 2258(2002)
  • 8X.P. Zhao, X.Duan, In Situ Sol-Gel Preparation of Polysaccharide/Titanium Oxide Hybrid Colloids and their Electrorheological Effect, J Colloid Interface Sci., 251,376(2002)
  • 9J.Lu, X.P. Zhao, Electrorheological Properties of Suspensions Based on Polyaniline-Montmorillonite Clay Nanocomposite, J.Mater. Res., 17, 1513(2002)
  • 10刘育,康诗钊.超分子体系中的分子识别研究──XXXV.含吡啶基β-环糊精衍生物的合成及其对氨基酸分子的手性识别[J].中国科学(B辑),2001,31(3):214-219. 被引量:14

二级参考文献14

  • 1J.Maselko, Mater. Sci. Eng., C4(3), 199(1996)
  • 2SUXiaodi(苏小笛) LIULiuzhan(刘六战) SHENHanxi(沈含熙).分析化学,(1995):1361-1361.
  • 3SONGLexin(宋乐新) ZHOUTaoyu(周桃玉) GUOZijian(郭子建).无机化学学报,(2001):9-9.
  • 4K.Koyana, M.Nakano, in Proc. of 6th Conf on ERF and MRS and their applications, ed. by M. Nakano and K. Koyama (World Scientific, Singapore, 1998) p.1
  • 5K.Koyana, M.Nakano, in Proc. of 6th Conf on ERF and MRS and their applications, ed. by M. Nakauo and K. Koyama (World Scientific, Singapore, 1998) p.87
  • 6YINJianbo(尹剑波) ZHAOXiaopeng(赵晓鹏).材料导报,(2000):10-10.
  • 7H.Ma, W.Wen, W.Y.Tam, P.Sheng, Phys. Rev. Lett., 77, 2499(1996)
  • 8R.S.Wylie, D.H.Macartney, J.Am. Chem. Soc., 114, 3136(1992)
  • 9C.Wu, J.Gao, Macromolecules, 33, 645(2000)
  • 10A.J.Toby, B.Neville, J.B.Richard, et al. J.Am. Chem. Soc., 121(22), 5274(1999)

共引文献35

同被引文献27

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部