期刊文献+

支持向量机的红外目标自动检测与识别 被引量:4

Infrared target detection and cognition based on the Support Vector Machine
下载PDF
导出
摘要 针对红外图像提出一种基于支持向量机的目标检测和识别算法.首先运用数学形态学方法对背景进行滤波,突出候选目标;选取适当的阈值和边缘检测算子对候选目标进行图像二值分割和边缘提取;最后以候选目标的边界不变矩作为特征,用支持向量机方法进行目标的识别,确定目标的位置.实验表明,该方法能够有效地实现对红外目标的检测和识别,并具有较高的抗噪声和抗复杂背景的能力. Support Vector Machine is a new machine learning technique based on the structure risk minimization principle of statistic learning theory.An Automatic Infrared Target Recognition algorithm based on the Support Vector Machines is presented.First,a mathematical morphology filter is used to suppress the noise in the infrared image and enhance the potential targets.Then,the proper grayscale threshold and edge-detector are selected to obtain the binary image and the target boundary.Finally,the infrared targets are recognized by using the Support Vector Machines from the potential targets based on the feature of boundary moment invariants.The experimental results prove that the algorithm can effectively detect and recognize the infrared target and possess the preferable properties of counter-noises and counter-complex background.
出处 《沈阳建筑工程学院学报(自然科学版)》 2004年第1期75-77,83,共4页 Journal of Shenyang Architectural and Civil Engineering University(Nature Science)
关键词 支持向量机 边界不变矩 数学形态学 自动目标检测识别 SVMs boundary moment invariant mathematical morphology ATR
  • 相关文献

参考文献6

二级参考文献33

  • 1[1]Hu M K. Visual pattern recognition by moment invariants. IRE Trans Inf Theory, 1962,8(2):179~187
  • 2[2]Wen W, Lozzi A. Recognition and inspection of manufactured parts using line moments of their boundaries. Pattern Recognition, 1993,26(10):1461~1471
  • 3[3]Belkasim S O, Shridhar M, Ahmadi M. Pattern recognition with moment invartiants : a comparative study and new results. Pattern Recognition, 1991,24(12):1117~1138
  • 4[5]Li B C, Shen J. Fast computation of moment invariant. Pattern Recognition,1991,24(8):807~813
  • 5Serra J. Image analysis and mathematical morphology[M]. London: Academic Press, 1982.
  • 6VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7Osuna E,Freund R,Girosi F. Support Vector Machines: Training and Application [R]. CBCL Paper #144 / AI Memo #1602,Cambridge,MA: Massachusetts Institute of Technology,AI Lab,1997.
  • 8Osuna E,Freund R,Girosi F. An improved training algorithm for support vector machines [A]. Principe J,Gile L,Morgan N,et al. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing [C]. IEEE,1997. 276-285.
  • 9Joachims T. Making large-scale support vector machine learning practical [A]. Scholkopf B,Burges C,Smola A. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge,MA: MIT Press,1999. 169-184.
  • 10LIN Chihjen. On the convergence of the decomposition method for support vector machines [J]. IEEE Transactions on Neural Networks,2001,12(6): 1288-1298.

共引文献59

同被引文献23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部